АОГОПАОНГНГН

ENHMEPSTIKO Δ EへTIO

 દ́үıve amó tov Gomperz kaı દ́xદı $\omega \varsigma ~ \varepsilon \xi n ́ \varsigma:$

The cover depicts an inscribed stone which was found in the Athens Acropolis and contains the interpretation of a stenographic system dated in the 4th century B.C. Its completion was done by Gomperz and is as follows:

	col. I	
	. $\because .$.	non ct
$\begin{aligned} & \text { med. } \\ & \text { s.IV a. } \end{aligned}$éa ÉxOYC' èn [MÓNON]	
	[Képa]c - 1. Tò Δ è némmton	
	TÔN ФONHÉNTON - Y.	
5	[TP]íA MÉN, П[EPITTḢN \triangle è̀ Tìn]	
	[TP]oc^amb[ÁNEI Δ^{\prime} ' $¢ K$ T']	
		col. II
10	[TAi]c Kepaiaic ámmo[T¢́]-	$E 1$
	[Palc], thic obpefic Ám[ớ]-	$\wedge{ }^{\text {H }}$
	[chc. T]	\|PI
	[$\Delta \in i ̂ r]$ Pádein Ô̌[TLC].	ϵ
15	[eýjeeía kai bpa[xeía]	
	[rPa]mм	
	[TO]Ŷ ФWNHENTOC [énì teî גp]-	[.]m
		[.] ${ }^{\text {/ }}$
		$A^{\text {D }}$
20	[Méc] ${ }^{\text {ceit }}$ TAŶ,	TI
		ΔH
	. \therefore^{6}. . A A \triangle^{\prime} énili tùn ÁpXìn	то
	[Mèn m]pochrménh . Teî.	
25	[Katà $\Delta \dot{\text { é }}$ Tjóo [mé]con mpòc	
	[MĖN T]ḢN ÁPXẊN TPOCH-	
	[「MÉ] ${ }^{\text {d }}$] Bhta	

＂ЛОГОПАОНГНГН＂

Máptios 2000
Tعúxoc 6
Emiotпиoviкós YпєúӨuvos：
KaӨŋүŋтท́я Гıஸ́pүoc Kapaүıávvŋs
Үпеи́Өuvoı＇Екбобпя：
$\Delta \rho$ ．I ω ávva Ma入aүapठŋ́
ミuvepүáтєя：
Гıávvņ Δ o入óү入ou
Báow Пavaүoroúخou
Avaбtáбıoৎ Патрıка́коя
Грарі́бтац：
＇Артєцıся Г λ а́рои

هı ε úӨuvoŋ：

 Артє́ μ бос 6 \＆Eாıठaúpou 15125 Парáठعıбоৎ А μ ароибíou тท入．： 6875300 • fax： 6854270
e－mail：ilsp＠ilsp．gr
http：／／www．ilsp．gr

Tףv $\varepsilon u \theta u ́ v \eta ~ T \omega v ~ к \varepsilon ı \mu \varepsilon ́ v \omega v ~ \varepsilon ́ x o u v ~ o l ~$ бuүүра甲عíc．
 ع́үıvє aпо́ то є́рүо HOPE（IST）то опоі́о
 Еирштаїки́я Епıтропи́я．

H＂лоүоплоদ́үŋбף＂ठıavદ́ $\mu \varepsilon \tau a \iota ~ \delta \omega \rho \varepsilon a ́ v$.
＂LogoNavigation＂
March 2000
Issue No 6
Scientific Director：
Professor George Carayannis
Edition Executives：
Dr．Ioanna Malagardi
Collaborators：
loannis Dologlou
Vaso Panagopoulou
Anastasios Patrikakos

Graphics Designer：

Artemis Glarou

Address：

Institute for Language and Speech Processing Artemidos 6 \＆Epidavrou Str．
15125 Marousi
Athens，Greece
tel．：＋301－6875300 • fax：301－6854270
e－mail：ilsp＠ilsp．gr
http：／／www．ilsp．gr
The authors are responsible for text content．
Funding for this issue was carried out by the HOPE（IST）project which is funded by DG XIII of the European Commission．
＂LogoNavigation＂is distributed free of charge．

Пívaкац Пєрıєхоцદ́vшv／Table of Contents

	$\sigma \varepsilon \lambda . /$ pg． 2
ПРОГРАММА＂ДIAへОГО玉＂（ЕПЕТ II）	$\sigma \varepsilon \lambda . /$ pg． 3
	бع入．／pg．
	бع入．／pg．
	$\sigma \varepsilon \lambda . / \mathrm{pg} .3$
	$\sigma \varepsilon \lambda . / p g$ ．
	$\sigma \varepsilon \lambda . / \mathrm{pg}$ ．
	$\sigma \varepsilon \lambda . / \mathrm{pg}$ ．
	$\sigma \varepsilon \lambda . / p g$.
	бह入．／pg．
	$\sigma \varepsilon \lambda . / \mathrm{pg}$ ．
Прої́vta mou avartúxӨŋкаv	$\sigma \varepsilon \lambda . / \mathrm{pg}$ ．
	$\sigma \varepsilon \lambda . / p g$ ．
	$\sigma \varepsilon \lambda . / \mathrm{pg} .5$
ПРОГРАММА＂ГАПФЗ＂（ЕПЕТ ІІ）	$\sigma \varepsilon \lambda . /$ pg． 6
	$\sigma \varepsilon \lambda . / \mathrm{pg}$ ．
	$\sigma \varepsilon \lambda . / \mathrm{pg}$ ．
	бह入．／pg．
А६ıопоínon	$\sigma \varepsilon \lambda . / \mathrm{pg} .6$
	$\sigma \varepsilon \lambda . / \mathrm{pg} .7$
From Granada to Athens－LREC 2000	बعл．／pg． 7
Overview	$\sigma \varepsilon \lambda . / \mathrm{pg}$ ．
Conference Aims	$\sigma \varepsilon \lambda . / \mathrm{pg} .7$
Conference Topics	$\sigma \varepsilon \lambda . / \mathrm{pg} .8$
Conference Programme Committee	$\sigma \varepsilon \lambda . / \mathrm{pg} .9$
Local Committee	$\sigma \varepsilon \lambda . / \mathrm{pg} .9$
Athens	$\sigma \varepsilon \lambda . / \mathrm{pg} .9$
Conference Venue－Zappeion Megaron	$\sigma \varepsilon \lambda . / \mathrm{pg} .9$
Scientific Papers	$\sigma \varepsilon \lambda . / p g .10$

From Stockholm to Chios Island－ $8^{\text {th }}$ ELSNET European Summer School on Language and Speech Communication－ TeSTIA 2000

Important Dates
Programme Committee
Local Organisation Committee
Sponsors
More Information

＂TEXNO「へתइミIA＂
$\sigma \varepsilon$ ．／．pg． 12
Про́үрациа इпоибо́v
Text to Speech Synthesis in Greek
$\sigma \varepsilon \lambda . /$ pg． 14
Features
Operation Enviroment
$\sigma \varepsilon \lambda . / p g .14$
$\sigma \varepsilon \lambda . / p g .15$
Spectral Estimation Based on the Eigenanalysis of Companion－Like Matrices
$\sigma \varepsilon \lambda . /$ pg． 16
1．Introduction
2．Companion Matrix Based Spectral Estimation（CSE）
3．HTLS method
4．Experimental Results
5．Conclusion

Sappho Multimedia Bilingual Dictionaries for Tourists	$\sigma \varepsilon \lambda . /$ pg． 20
Macrostructure of the dictionary	$\sigma \varepsilon \lambda . / \mathrm{pg} .20$
Microstructure of the dictionary	$\sigma \varepsilon \lambda . / \mathrm{pg} .20$

ЕІбаүшүıкó $\sum \eta \mu \varepsilon i ́ \omega \mu a$

 $\varepsilon \xi \eta ́ \varsigma ~ Ө \varepsilon \mu a t ı \kappa \varepsilon ́ \varsigma ~ \varepsilon v o ́ t \eta \tau \varepsilon \varsigma:$

 Геvıки́я Граниатвías ’Epeuvas каı Texvo入oүías
 Bıоипхаvía＂．Н пиعрíסа праүнатопоı́ŋŋккє тпv

 ＂Second International Conference on Language Resources and Evaluation＂，пои Өа праүиатопоıпӨєí otךv AӨウ́va amó 31 Maíou ع́فৎ 2 louvíou 2000.
 yıa to Өepıvó $\Sigma \chi о \lambda \varepsilon i ́ o ~ T e S T I A ~ " E u r o p e a n ~ S u m m e r ~$ School on Language and Speech Communication＂， пои Өа праүнатопоıпӨвí бтך Xío апо́ 15 в́ $\omega \varsigma 30$ Iou－入íou 2000 uпó tךv aıүíסa tou ELSNET．
 рочорі́єя үıа то Мвтаптихıако́ Про́үраниа＂ТЕ－ Х ХОГА $\Omega \Sigma \Sigma$ A＂．$^{\prime}$

Tદ́入oৎ η пє́ $\mu \pi \tau \eta ~ Ө \varepsilon \mu а т ı к \eta ́ ~ \varepsilon v o ́ t \eta т а ~ п \varepsilon \rho เ \varepsilon ́ \chi \varepsilon ı ~ E \rho \varepsilon u-~$

 каı Өє́ $\mu a \tau а ~ Ф а \sigma \mu а т ı к \eta ́ \varsigma ~ A v a ́ \lambda u \sigma \eta s . ~$

Introductory Note

The sixth issue of＂LogoNavigation＂contains the following thematic units：

The first thematic unit contains the presentations of DIALOGOS and SAPPHO projects，carried out in the context of the Information Day under the title＂Society，Civilization and Cultural Industry organized by the General Secretariat of Research and Technology on March 32000 in the National Research Institution．

The second thematic unit contains general information about the Second International Conference on Language Resources and Evaluation＂LREC＂，which will take place in Athens from May 31 to June 22000.

The third thematic unit contains information about the 8th ELSNET European Summer School on Language and Speech Communication＂TeSTIA＂， which will take place on Chios Island from July 15 to 302000.

The fourth thematic unit contains information about the＂TECHNOGLOSSIA＂program of postgraduate studies．

Finally，the fifth thematic unit contains the research results related to the issues of Language and Speech Processing，as well as issues related to Spectral Analysis．

ПРОГРАММА＂ДIAЛОГОГ＂（ЕПЕТ II）

Пapouoíaoŋ oтףv $\eta \mu \varepsilon \rho i ́ \delta a ~ т \eta \varsigma ~ Г Г Е Т ~$ ＂Koıv ω vía－Поגıтıбцо́s－Поגıтıбнıки́ BıouףXavía＂ 3 Maptíou 2000

 tóбo tous عтаípouc tnc коוvorpaそíac óбo каı عu－

 นíaç AӨnvต́v，ЕМП，IEN）．

Фıлоборía tou＂Δ IAへОГОY＂

 こ̇́vns 「入ん́oбas＂

－Грации́ $\Delta \rho a ́ \sigma \eta \varsigma ~ 6: ~ « \Delta ı ா п а \varphi \varepsilon ́ я ~ Ф \omega v ท ́ s » ~$
－Грации́ $\Delta \rho a ́ \sigma \eta \varsigma ~ 7: ~ « \Sigma u ́ v \theta \varepsilon \sigma \eta ~ K \varepsilon \mu \mu \varepsilon ́ v o u » ~$

Мєтá甲рабŋ каı $\mu \varepsilon т а \varphi \rho а \sigma т ı к а ́ ~ \varepsilon \rho ү а \lambda \varepsilon i ́ a ~$

入оүккй $\mu \varepsilon т а ́ \varphi p a o n ~ Ө a ~ \beta \rho \varepsilon ı ~ п о \lambda \lambda \varepsilon ́ ৎ ~ \varepsilon \varphi а р \mu о ү \varepsilon ́ \varsigma ~ \delta ı \varepsilon-~$

 ки́ $\lambda u ́ \sigma n ~ ү ı a ~ v a ~ o p \gamma a v \omega ́ \sigma \varepsilon ı ~ o ~ \mu \varepsilon t a \varphi p a o t ท ́ я ~ t o ~ \varepsilon ́ p \gamma o ~$

 каı ठра́бєıৎ uпоסони́я．

 vஸ́v．H $\lambda \varepsilon \xi ı к о ү \rho а 甲 ı к \eta ́ ~ \varepsilon р ү а \sigma i ́ a ~ \sigma т о v ~ \varphi о \rho \varepsilon ́ a ~ a u t o ́ v ~$
 үра甲ク́Өпкє» то пра́то єпі́пєठо каı то ঠєúтєро єпíпє－
 каı ठєutєроүєvє́ৎ）поu ท́tav кaı та плє́ov єпعíүоvта，
 $\mu \eta \chi a v o ү \rho a \varphi \eta \forall \varepsilon i ́ ~ к a ı ~ т о ~ т \rho i ́ t o ~ \varepsilon п i ́ m \varepsilon \delta о . ~ \Sigma т \eta v ~ u п о \lambda о ү ь-~$ отıкท́ $\lambda \varepsilon \xi ı к о ү \rho a \varphi i ́ a ~ \varepsilon ́ \chi \varepsilon ı ~ \mu \varepsilon ү a ́ \lambda \eta ~ \sigma \eta \mu a \sigma i ́ a ~ v a ~ u п a ́ \rho \chi \varepsilon ı ~$ оиүкєкрюцв́vo $\lambda \varepsilon \xi ı к о ү \rho а 甲 ı к о ́ ~ \mu о v т \varepsilon ́ \lambda о ~ ү ı а ~ т \eta v ~ \varepsilon п ı т и-~$

 тпऽ $\mu о \rho \varphi о \lambda о ү ı к \eta ́ я ~ п \lambda п р о ч о р i ́ a s . ~ H ~ \varepsilon р ү а \sigma i ́ a ~ a u t ท ́ ~ \varepsilon i ́-~$ vaı $\mu \varepsilon ү a ́ \lambda \eta \varsigma ~ \sigma \eta \mu a \sigma i ́ a s ~ ү ı a ~ \mu \varepsilon \lambda \lambda о v т เ \kappa \varepsilon ́ \varsigma ~ \varepsilon v \varepsilon ́ p ү \varepsilon เ \varepsilon ৎ ~ \varepsilon v ~$ ó $\psi \varepsilon ı ~ \delta \eta \mu ı о u \rho ү i ́ a ̨ ~ u п о \lambda о ү ı \sigma т ı к \omega ́ v ~ \lambda \varepsilon \xi ı к \omega ́ v . ~$
 દ́va عíठoç $\lambda \varepsilon \xi ı к о и ́ ~ п о \lambda u \mu \varepsilon ́ \sigma \omega v ~ ү ı a ~ п a ı ठ ı a ́ ~ п о u ~ п ı \sigma є и ́ \varepsilon-~$
 $\sigma \chi \varepsilon \delta \iota a \sigma \mu \varepsilon ́ v o ~ \lambda \varepsilon \xi ı к o ́ ~ ү ı a ~ п a ı \delta ı a ́ ~ \mu \varepsilon ́ \chi \rho ı ~ \sigma \eta ́ \mu \varepsilon \rho a ~ o u ́ t \varepsilon ~ \sigma \varepsilon ~$
 ка入и́ $\psi \varepsilon ા ~ п о \lambda \lambda \varepsilon ́ \varsigma ~ a v a ́ ү к \varepsilon \varsigma . ~$

 бu $\mu \omega$ víac $\mu \varepsilon \tau a \xi u ́ ~ t \omega v ~ \lambda \varepsilon ́ \xi \varepsilon \omega v . ~ \Delta \eta \mu ı о u p ү \eta ́ Ө \eta к \varepsilon ~ o ́ \lambda \eta ~ \eta ~$

 хӨŋкє દ́va vદ́о проїóv．

 عпєтєи́XӨŋ apүótعра．

甲лои́c（YпєúӨuvoc IEN）

 үía عvós Е入入ŋvıкоú $\sigma u v Ө \varepsilon ́ t \eta ~ \sigma \varepsilon ~ п а \rho a Ө u \rho ı к o ́ ~ п \varepsilon \rho ı ß a ́ \lambda-~$

 $\lambda u ́ ~ a ́ \mu \varepsilon \sigma о ~ т \rho о ́ п о . ~ ' Е т \sigma ı ~ о ~ \chi \rho ท ́ \sigma т һ ~ т о u ~ H / Y ~ Ө a ~ \varepsilon ́ \chi \varepsilon ı ~ т \eta v ~$
 пра́үца пои Өа $\beta \varepsilon \lambda т ı \omega ́ \sigma \varepsilon ı ~ к а т а ́ ~ п о \lambda u ́ ~ т \eta v ~ п о ו o ́ т \eta т а ~ \zeta \omega-~$

 то $\varepsilon \rho ү а \sigma i ́ a \varsigma ~ a u т o ́ ~ к а т \varepsilon ́ \lambda \eta \xi \varepsilon ~ \sigma \varepsilon ~ т \varepsilon к \mu \eta \rho ı \omega \mu \varepsilon ́ v \varepsilon \varsigma ~ п р о т а ́-~$ бદıৎ каı $\sigma \varepsilon v a ́ p ı a ~ ү ı а ~ т \eta v ~ а п о т \varepsilon \lambda \varepsilon \sigma \mu а т ı к и ́ ~ \sigma u v \varepsilon р ү а \sigma i ́ a ~$

عпוкоıvшvías （Yпєúधuvos Пaveпıбти́дıо Патри́v）

 ঠпцıоирүía عvós пршто́типои autó $\mu a t o u ~ п р о ч о р ь-~$ кои́ ठıа入оүъкои́ бuоти́цатоя（Spoken Dialogue

 ठívovtac плпрочорį́я пои ачороúv бuvá入入аүна， $\mu \varepsilon т о х \varepsilon ́ \varsigma ~ х \rho п \mu а т ı \sigma т п \rho i ́ o u, ~ u п о ́ \lambda о เ п о ~ \lambda о ү а \rho ı a \sigma \mu \omega ́ v ~$ к．入п．，ท́ проßаívovтаৎ бє трапєそıкє́ৎ кıvฑ́бєıৎ（ $\mu \varepsilon \tau а-$ фора́，плпршرи́ $\lambda о ү а \rho ı a \sigma \mu \omega ́ v ~ к . a ́.) ~ к а т о ́ п ı v ~ п а р а ү ү \varepsilon-~$

 $\mu \pi о \rho \varepsilon i ́ ~ v a ~ a v t \lambda \eta ́ \sigma \varepsilon ı ~ \eta ́ ~ v a ~ a п о Ө \eta к \varepsilon u ́ \sigma \varepsilon ı ~ \sigma \varepsilon ~ a u t \eta ́ v ~ \sigma u-~$

 бદı то $\sigma u ́ \sigma т \eta \mu a . ~ \Sigma \tau \eta v ~ \sigma u v \varepsilon ́ \chi \varepsilon ı a ~ \varepsilon \rho \omega t a ́ t a ı ~ v a ~ \varepsilon п ı \lambda \varepsilon ́ \xi \varepsilon ı ~$

（YпєúOuvos Knowledge A．E．）

Avtıкєí $\mu \varepsilon v o$ тou Пакв́тou Epүaбíac 7.1 ŋ́тav η avá－

vo $\theta \varepsilon \mu a т о \lambda o ́ ү ı o ~ к a ı ~ \mu \varepsilon ~ т \eta v ~ a \lambda \lambda \eta \lambda \varepsilon п i ́ \delta \rho a \sigma \eta, ~ \varphi u \sigma ı к a ́, ~$
 үкки́я ठıठабка入íac．Гıа то бкопо́ аuто́ архıка́ биүкє－

 үદvผ́v характпрıбткผ́v，ठıápӨ $\rho \omega \sigma \eta$ ，катךүорıпоо́n－ бп к．лп．）проє́ки廿аv oı ßабıкв́я пара́ $\mu \varepsilon т \rho о \iota ~ к а ı ~ a ́ \xi о-~$
 оо入оүкки́я－ичо入оүкки́я סони́я пои $\theta a \ll \delta \eta ү \eta ́ \sigma о u v » ~$ бтŋv $\sigma u v \varepsilon ́ \chi \varepsilon ı a ~ t o v ~ \sigma u v Ө \varepsilon ́ t \eta ~ \sigma т \eta v ~ \delta \eta \mu ı о u \rho ү i ́ a ~ \tau \omega v ~ \varepsilon п া-~$ ото入ஸ́v．Мєтá tŋv a $\mu \varphi i ́ \pi \lambda \varepsilon u \rho \eta ~ к a ı ~ a \mu \varphi i ́ \delta \rho о \mu \eta ~ \varepsilon \xi \varepsilon \lambda ı-~$

 íסıо（апоото入є́aৎ，пара入ŋ́птпя，xроvo入оүía，Өદ́ $\mu \mathrm{a}$ ，

 oŋ óбo каı үıа ठıаркй $\varepsilon \lambda \varepsilon ү \chi о ~ к а ı ~ \varepsilon \xi а ү \omega ү \eta ́ ~ п а р а т \eta-~$

МعӨоболоүía тоu＂Δ IAへОГОY＂

Апо́ плєира́я $\mu \varepsilon Ө$ обо入оүíac η коוvопра६ía ако入оúӨ η－

 aпó ठокıци́ $\varepsilon v a \lambda \lambda a к т ı к \omega ́ v ~ \mu \varepsilon Ө o ́ \delta \omega v . ~$
 ка́Өє пєрі́тт $\omega \sigma \eta, \sigma \cup \mu ß a t \eta ́ \varsigma ~ \mu \varepsilon$ то параӨирıко́ пє－ pıßá入入ov
 epyovouías
 otáסıa tŋ̧ avártтuそŋ̧

Проїóvта пои avaптúXӨŋкаv

－इиүкротпцќvo пєрıßá入入ov үıа $\mu \varepsilon т а \varphi \rho a \sigma т ı к а ́ ~ \varepsilon \rho-~$ үа入єía（Tr．AID）－YпєúӨ．：IEへ
 \triangle OYKA
－乏uvtaktiкós סıopӨんtńs tп̧ Nźas E入入ŋvikńs （＂乏u
 $\omega \varsigma ~ \xi \varepsilon ́ v \eta \varsigma ~ ү \lambda \omega ́ \sigma \sigma a \varsigma ~(" Ф ı \lambda о ү \lambda \omega \sigma \sigma i ́ a ") ~-~ Y п \varepsilon u ́ \theta .: ~ I E \Lambda ~$

 （Yпعи́Ө．：Пaveாเбти́นıo Пatрผ́v）

 （Yпєヒ́Ө．：Unixfor）
 （YпєúӨ．：Knowlwdge A．E．）

Dia入óyou

 Δ ıáлоүo．
O＂عкф $\omega v \eta \tau \eta ́ \varsigma ", ~ \eta ~ " \varphi ı \lambda о ү \lambda \omega \sigma \sigma i ́ a " ~ т о ~ " T r . A I D " ~ к а ı ~ \eta ~$

To IEへ $\sigma u v \varepsilon \chi i ́ \zeta \varepsilon ı ~ v a ~ a v a ா t u ́ \sigma \sigma \varepsilon ı ~ k a ı ~ v a ~ \beta \varepsilon \lambda \tau ı \omega ́ v \varepsilon ı ~ т ı ৎ ~$

 ото плаíбıо тоu＂\triangle IААОГОҮ＂．

EӨvıкó Мعтбóßıo По入uteхvعío（EMП），lóvio Пaveாı－

 $\Lambda \varepsilon \xi ı к o ́ ~ т \eta \varsigma ~ N \varepsilon ́ a \varsigma ~ E \lambda \lambda \eta v ı к \eta ́ \varsigma, ~ E p s i l o n ~ S o f t w a r e ~ A . E ., ~ Е к-~$
 A．E．，Unixfor A．B．E．E．，Трáп६弓а П入прочорıஸ́v A．E．， Pádıo Kapaүıávvŋ A．E．T．E．，Knowledge A．E．

ПРОГРАММА＂ГАПФЗ＂（ЕПЕТ II）

Пapouoíaon otqv quepíठa тпS ГГЕТ ＂Koıvตvía－Поגıтıбんós－Поגıтıбんıки́ BıouףXavía＂ 3 Maptíou 2000

＂ГАПФЗ＂／Мє́pos поu a甲орá та NHइIA

Oı otóxo tou ع́pyou عívaı ol દ $\mathfrak{\text { ńs } : ~}$
－$\Delta \eta \mu ı о и \rho \gamma i ́ a ~ т \omega v ~ п р \omega ́ t ~ \omega v ~ D V D-R O M ~ E \lambda \lambda \eta v i к и ́ я ~ п а-~$

－Eukaıpía yıa بía ω paía đúv $\theta \varepsilon \sigma \eta$ ．

 aбхо入ПӨoúv $\mu \varepsilon$ то avtıквíhвvo．

Eגлŋvıкá \＆Eعvóy入 $\omega \sigma \sigma a$ DVD－ROM

－Mouozío
－Bıßлıоө́ккп
－Пعрıпүท́бвıs
 Өрпбквía，бúyxpovn $\zeta \omega \eta ́, ~ a \rho \chi а ⿱ о \lambda о ү i ́ a, ~ о к к о v о \mu i ́ a, ~$
 yía）

 перо́́xovta：
 тоирі́тгя．
－MaӨńmata E入入nviкńs үıa apxapíous．

－Өعиато入оүккє́я каіvотоні́єя

 плпрочорı́v）．

 үрафía／пгрıßá入入ov，apxaıо入оүía，по入ıтьбло́я．
 по入иєпíпєठๆ боцй．

Oו прштотипі́єৎ шৎ проৎ то иגıко́ вívaı：
－Плои́боо u入ıкó（video aпó үupíवиata，єוкóvвৎ aпó фштоүра甲п́бєцৎ，пршто́типп ноибוкй，пршто́типа кв́́uعva）

А६ıппоínбך

 рí́та．

 （sophistique）oтa रépia tou EOT үıa тףv проஸ́Өnon

 бعı хрŋ́биц пароибía то 2004.

vıкá xpóvıa（＂KへЕOПАТРА＂）

O otóxоৎ autoú tou $\mu \varepsilon ́ \rho o u ~ t o u ~ \varepsilon ́ \rho ү o u ~ " \Sigma a п \varphi \omega ́ " ~ \varepsilon i ́ v a ı ~$

 бхо入єía тŋ̣ оноүદ́vยıaৎ．

Паıठаүшүıкє́я прштотипіі́єя

 $\lambda 0 u \theta \varepsilon \varsigma$ ：
－$\Delta ı a \theta \varepsilon \mu a t ı n ́ ~ п \rho о \sigma \varepsilon ́ ү ү ı \sigma \eta ~$

 เбторıки́v．

 бтоv $\sigma \chi \varepsilon \delta ı a \sigma \mu o ́)$

ГYNTENEГTE Σ ГAПФOYГ：

IE＾，ПІ，KEE＾－AKA \triangle HMIA AOHN』N，E＝ 2 TEPIKOI гYNEРГАТЕ

FROM GRANADA TO ATHENS

LREC－2000（31st MAY－${ }^{\text {nd }}$ JUNE 2000） ZAPPEION MEGARON， ATHENS，GREECE
Despina Scutari
ILSP－Liaison Department

OVERVIEW

The Second International Conference on Language Resources was organised with great success at the Palacio de Exposiciones y Congresos in Granada， Spain，between the $28^{\text {th }}$ and $30^{\text {th }}$ of May 1998．The conference was hosted by the University of Granada and was oganised with the support of DG－XIII of the European Commission and the Fundacion Banco Central－Hispano．

Following the widespread recognition and influence of the first LREC conference，the Second International Conference on Language Resources and Evaluation will take place at Zappeion Megaron in Athens，Greece between the $31^{\text {st }}$ of May and the $2^{\text {nd }}$ of June 2000 （pre－conference workshops will be organised on the $29^{\text {th }}$ and $30^{\text {th }}$ of May）and will be hosted by the Institute for Language and Speech Processing（ILSP）and the National Technical University of Athens（NTUA）．

LREC－2000 has been initiated by ELRA and is organised in cooperation with other Associations and Consortia，including ACL，ALLC，COCOSDA， ORIENTAL COCOSDA，EAFT，EAGLES，EDR， ELSNET，ESCA，EURALEX，FRANCIL，LDC， PAROLE，TELRI，etc．，and with major national and international organisations，including the European Commission－DG XIII，ARPA，NSF，the IC／863 HTRDP Project（China），the National Natural Science Foundation of China，the ICSP Permanent Committee（Korea），The Natural Language Technical committee of JEIDA（Japan），and the Japanese Project for International Coordination in Corpora，Assessment and Labelling．

CONFERENCE AIMS

In the framework of the Information Society，the
pervasive character of Human Language Technologies (HLT) and their relevance to practically all the fields of Information Society Technologies (IST) has been widely recognised.

Two issues are currently considered particularly relevant: 1) the availability of language resources and 2) the methods for the evaluation of resources, technologies and products. Substantial mutual benefits can be expected from addressing these issues through international cooperation.

The term language resources (LR) refers to sets of language data and descriptions in machine readable form, used specifically for building and evaluating natural language and speech algorithms or systems, for software localisation industries and language services, for language enabled information and communication services, for electronic commerce, electronic publishing, language studies, by subjectarea specialists and end users.

Examples of language resources are written and spoken corpora, computational lexica, grammars, terminology databases, and basic software tools for the acquisition, preparation, collection, management, customisation and use of these and other resources.

The relevance of evaluation for Language Engineering is increasingly recognised. This involves assessment of the state of the art for a given technology, measuring the progress achieved within a programme, comparing different approaches to a given problem and choosing the best solution, knowing its advantages and drawbacks, assessment of the availability of technologies for a given application, product benchmarking, and assessment of user satisfaction.

HLT and R\&D in language technologies have made important advances in the recent past in various aspects of both written and spoken language processing. Although the evaluation paradigm has been studied and used in large national and international programmes, including
the US ARPA HLT programme, the EU LE programme under R\&D framework programmes, the Francophone Aupelf-Uref programme and others, and in the localisation industry (LISA and LRC), it is still subject to substantial unresolved basic research problems.

The aim of this conference is to provide an overview of the state of the art, to discuss problems and opportunities, and to exchange information regarding ongoing and planned activities, language resources and their applications. It is also intended to discuss evaluation methodologies and demonstrate evaluation tools, and to explore possibilities and promote initiatives for international cooperation in the areas mentioned above.

CONFERENCE TOPICS

The following list gives some examples of topics which will be addressed at the Conference:

Issues in the design, construction and use of Language Resources (LR) (theoretical \& best practices)

- Guidelines, standards, specifications, and models for LR
- Organisational issues in the construction, distribution, and use of LR
- Methods, tools, procedures for the acquisition, creation, annotation, management, access, distribution, and use of LR
- Legal aspects and problems in the construction, access and use of LR
- Availability and use of generic vs. task / domain specific LR
- Methods for the extraction and acquisition of knowledge (e.g. terms, lexical information, language modelling) from LR
- Monolingual and multilingual LR
- Multimodal and multimedia LR
- LR and the needs/opportunities of the emerging multimedia cultural industry
- Industrial production and use of LR
- Integration of various modalities in LR (spoken, visual, gestual, textual)
- Exploitation of LR in different types of applications (language technology, information retrieval, vocal interfaces, electronic commerce, etc.)
- Industrial LR requirements and the community's response
- Analysis of user needs for LR
- Mechanisms of LR distribution and marketing
- Economics of LR
- Customisation and use of LR
- Research issues relevant for LR
- Issues in Human Language Technologies evaluation
- Evaluation, validation, quality assurance of LR
- Benchmarking of systems and products; resources for benchmarking and evaluation
- Evaluation in written language processing (text retrieval, terminology extraction, message understanding, text alignment, machine translation, morphosyntactic tagging, parsing, semantic tagging, word sense disambiguation, text understanding, summarisation, localisation, etc.)
- Evaluation in spoken language processing (speech recognition and understanding, voice dictation, oral dialog, speech synthesis, speech coding, speaker and language recognition, etc.)
- Evaluation of document processing (document recognition, on-line and off-line machine and handwritten character recognition etc.)
- Evaluation of (multimedia) document retrieval and search systems
- Evaluation of multimodal systems
- Qualitative and perceptive evaluation
- Evaluation of products and applications
- Blackbox, glassbox and diagnostic evaluation of systems
- Situated evaluation of applications
- Evaluation methodologies, protocols and measures
- From evaluation to standardisation of LR
- Research issues relevant to evaluation

General issues

- National and international activities and projects
- LR and the needs/opportunities of the emerging multimedia cultural industry
- Priorities, perspectives, strategies in the field of LR national and international policies
- Needs, possibilities, forms, initiatives of/for international cooperation

CONFERENCE PROGRAMME COMMITTEE

Nicoletta Calzolari, ILC, Pisa, Italy
George Carayannis, ILSP, Athens, Greece
Khalid Choukri, ELRA, Paris, France
Harald Hoege, Siemens, Munich, Germany
Bente Maegaard, CST, Copenhagen, Denmark
Joseph Mariani, LIMSI-CNRS, Orsay, France
Antonio Zampolli, Pisa University, Pisa, Italy (conference chair)

LOCAL COMMITTEE

George Babiniotis, University of Athens
Stelios Bakamidis, ILSP, Athens
George Carayannis, ILSP, Athens (local committee chair)
Christophoros Charalambakis, University of Athens
Nikos Chatzigeorgiou, ILSP, Xanthi
Ioannis Dologlou, ILSP, Athens
Maria Gavrilidou, ILSP, Athens
Michael Kopidakis, University of Athens
Stella Markantonatou, ILSP, Athens
George Papakonstantinou, NTUA, Athens
Stelios Piperidis, ILSP, Athens
Gregory Stainhauer, ILSP, Athens
Michael Strintzis, University of Thessaloniki

ATHENS

Athens provides an ideal location for the organisation of the LREC-2000 conference. The city, which has been the capital of Greece since 1834, provides an overall view of the basic periods of Greek history: Ancient, Roman, Byzantine and Modern. In addition to the Acropolis and the Parthenon, there are many beautiful sights such as: the Greek Parliament, the ancient "Herodion" theatre, the marble stadium (the first modern Olympic Games were held here in 1896), Lycabettus Hill (\& St. George's chapel), the old neighbourhood of Plaka and Monastiraki (traditional flea market), and the National Garden. Athens enjoys warm, sunny weather during the spring and summer months and allows its visitors to take full advantage of all that it has to offer. Many cultural activities are organised in Athens during the summer period in the framework of the Athens Festival.

CONFERENCE VENUE - ZAPPEION MEGARON

The conference will take place in the Zappeion Megaron which was erected in 1874-1888 and was designed by the architect Theophil Hansen. Zappeion

Megaron has witnessed important moments in Greece's political history: the Treaty of Accession by which Greece became a full member of the European Community was signed on its premises on the $29^{\text {th }}$ of May 1979. It normally serves as an international exhibition hall according to the original plan of its designers.

Zappeion Megaron is located in the very center of the city, next to the National Garden and just off Syntagma Square, the central square of Athens, and the Parliament. It is within walking distance from the major archaeological sites of Athens, the old quarters of the city and the administrative and business center and, last but not least, close to the central shopping and recreational areas. The Central Post Office, many banks and a broad range of hotels are also within walking distance.

SCIENTIFIC PAPERS

About 311 papers wil be published covering many aspects of Language Resourses and Evaluation. A first classification of the papers is as follows:
Written 168
Speech 95
Terminology 15
Evaluation 33
Almost 137 papers will be presented by their authors in oral sessions, while 174 in posters.
Around 37 papers will include demonstrations.

From Stockholm to Chios Island the 8 ${ }^{\text {th }}$ ELSNET European Summer School on Language and Speech Communication

(TeSTIA-2000, Chios Island, $15^{\text {th }}-30^{\text {th }}$ July, 2000)
Anastasios Patrikakos
ILSP - Liaison Department

Since 1993 ELSNET (the European Network in Language and Speech) has organised the annual European Summer School in Language and Speech Communication, better known as the ELSNET Summer School (ESS).

The ESS has become one of the most successful annual training courses in Europe. The target audience of the Summer School are advanced undergraduate students, PhD students, postdocs and academic and industrial researchers and developers.

Each year the ESS is devoted to a new, advanced topic in the fields of Language and Speech Technology. The topics covered so far are: Prososy (1993, London, UK), Corpus-Based methods (1994, Utrecht, NL), Multilinguality (1995, Edinburgh, UK), Dialogue Systems (1996, Budapest, HU), Lexicon Development for Language and Speech Processing (1997, Leuven, BE), Robustness: real-life applications in Language and Speech (1998, Barcelona, ES), Multimodality in Language and Speech Systems (1999, Stockholm, SE).

In last year's ESS in Stockholm multimodality was covered in a multitude of aspects. Conditions and theories for multimodal communication between persons as well as multimodal input/output in technical systems were included in the curriculum.

The programme of the Stockholm ESS included lectures on topics like Multimodal Speech Perception: A Paradigm for Speech Science, Multimodality of meaning in speech and gesture, Multimodality in language and speech systems - from
theory to design support tool, Intelligent Multimedia Presentation Systems, Architectures for integrated multimodal input-output systems and the humanoid interface, Face-to-face communication including different modalities, Multimodal interaction and people with disabilities, Developing intelligent multimedia applications.

The topic selected for 2000 is Text and Speech Triggered Information Access. Years of speech and billions of characters are stored in various media including the Internet. How can we ever find useful information in such vast archives? Automatic procedures that can recognise speech accurately and linguistic tools that automatically take out essential information components may do the job. The $8^{\text {th }}$ European Summer School on Language and Speech Communication will present the current state of the art.

The programme has the following outline: The
summer school starts every morning with a plenary session addressed to issues related to the integrated processing of text and speech. Following the plenary session, there are two slots of optional courses and practical workshops, run in parallel. In the evenings, the students are given the opportunity to present and discuss their own projects.

TeSTIA will be accompanied by a rich cultural programme and many entertainment features, including a day trip to the small islands of Inousses, a lecture on the history and cultural tradition of the Island which is considered as a possible birthplace of Homer, a presentation from an art specialist of the paintings of Chios by Delacroix, etc.

IMPORTANT DATES

Deadline for pre-registration \& grant application: April 15, 2000
Notification of registration and grants: May 1, 2000
Payment deadline: June 1, 2000

TeSTIA 2000 - Preliminary Programme		
Week 1 (17/7-21/7 2000)		
Plenary	Morning Parallel Sessions	Afternoon Parallel Sessions
Alex Hauptman (CMU)	(la) Phil Woodland (Cambridge University) Speech Recognition	(Ila) Eric Fosler-Lussier (ICSI Berkeley) Pronunciation modelling
Multimedia Digital Libraries	(lb) David Hawking (CSIRO, Australia) Very large-scale information retrieval	(IIb) Christian Jacquemin (LIMSI, France) Reducing information variation in text
Week 2 (24/7-28/7 2000)		
Plenary	Morning Parallel Sessions	Afternoon Parallel Sessions
Chris Brew (OSU) XML and linguistic markup	(IIIa) Paul Taylor (Edinburgh University) Prosody	(IVa) Yosi Gotoh (Sheffield University) Language modelling
	(IIIb) Ido Dagan (Bar Ilan University, Israel) Text Mining	(IVb) Jussi Karlgren (SICS, Sweden) Text and Genre classification

PROGRAMME COMMITTEE

Gerrit Bloothooft（Utrecht University，NL）
Koenraad de Smedt（University of Bergen，NO）
Steve Renals（University of Sheffield，UK）
Gregory Grefenstette（Xerox Grenoble，FR）
George Carayannis（ILSP，GR）Local org．committee chair

LOCAL ORGANISATION COMMITTEE

Stelios Bakamidis，ILSP，Athens
George Carayannis，ILSP Athens，Chair
Vassilios Digalakis，Technical University of Crete，Chania
Ioannis Dologlou，ILSP，Athens
Panagiotis Konstantopoulos，University of Crete，Iraklio
Yannis Kontos，Athens University of Business and Economics，Athens
George Kouroupetroglou，University of Athens，Athens
Ioanna Malagardi，General Secretariat for Research and Technology，Athens
Anastasios Patrikakos，ILSP，Athens
Stelios Piperidis，ILSP，Athens
Athanassios Protopapas，ILSP，Athens
Timoleon Sellis，NTUA，Athens
Gregory Stainhauer，ILSP，Athens
Athanasios Tsakalidis，Computer Tech．Institute，Patras

SPONSORS

ELSNET，IHP，and ILSP
Supporting organisations：ESCA and EACL

MORE INFORMATION

TeSTIA 2000 Secretariat
Institute for Language and Speech Processing（ILSP）
Artemidos 6 \＆Epidavrou str．
15125 Athens，Greece
Tel．：＋30 16875300
Fax：＋30 16854270
URL：http：／／www．ilsp．gr／testia／testia2000．html e－mail：testia＠ilsp．gr

ПРОГРАММАТА МЕТАПТҮХІАК इПOY $\triangle \Omega N$（EПЕАЕК）

＂ТЕХNOГ＾Лミ£IA＂：

 Акаб．Етоৎ 1998－1999

EONIKO KAI KАПОДI亡TPIAKO ПА－ NEПIгTHMIO AOHNSN
Філобочіки́ Σ холи́，

EONIKO METटOBIO ПO＾YTEXNEIO
 Xavıкผ́v Үполоүıбтஸ́v， Тонє́ą Плпрочорıки́я

 avtaпокрívєтаı то поотвıvó $\mu \varepsilon v o$ в́рүо

 $\mathrm{v} \omega \mathrm{v}$ ．

a）tou $\mu \varepsilon т а п т и х ı а к о и ́ ~ \varepsilon п ı п \varepsilon ́ \delta о и ~ к а ı ~$

To $\mu \varepsilon т а п т и х ı а к о ́ ~ п о о ́ ү \rho а \mu \mu а ~ " T E X N O Г \wedge \Omega \Sigma \Sigma I A " ~$ عívaı каıvoтонıкó үıa tov E入入aסıкó Xف́po óxı μ óvo

 ठúo $\sigma \cup \mu \pi \lambda \eta \rho \omega \mu a t ⿺ 𠃊 \omega ́ v ~ к \lambda a ́ \delta \omega v ~ \sigma \pi o u \delta \omega ́ v ~-~ t o v ~$
 к入а́бо тпя П入прочоркки́я．

Про́үрацца इпоибம́v

A＇$E \xi a ́ \mu \eta v o$

Фi入ó入oyot	MnXavıкоí
1．Еıбаүшүŋ́ бтоv проүрациатібно́ I $\Delta \iota \delta$ ．：$\Delta \rho$ ．Níкоя Г入ápos	ү $\lambda \omega \sigma \sigma 0 \lambda о$ үía $\Delta \iota$ ．：KaӨnүптńs Гіш́pyos Мпаипіvі́́тпя， к．Маркопои́лоu
2．Еıбаүшүŋ́ бтоv проүраниатібио́ II $\Delta \iota$ ．：$\Delta \rho$ ．Níкоя Г λ а́роя	Г＾ผ́ббая $\Delta ı$ ．：Г．Mayou入ás， M．Koutoou入éخou， E．Пavapétou
3．Mnхaviбцoí параүшүү́s甲 ω vи́я каі то $\varphi \omega v \eta$ тıко́ б $\boldsymbol{\eta} \mu \mathrm{a}$ отоv \mathbf{H} / \mathbf{Y} $\Delta \iota$ ．：Ka日．Гіш́pyoç Kapayıávvns	3．$\Delta о \mu \grave{́}$ Kєıиモ́vou $\Delta \iota$ ．：к．Аıк．Мпака́кои， к．М．Какрıঠи́
4．Епıкоıvตvía avӨрผ́поu－ $\mu \eta \chi a v \eta ́ s$ $\Delta \iota \delta$ ．：Ka日．Гıш́pyoç Kapayıávvŋs	каı øŋцабıолоү́́a $\Delta ı$ ．：к．Өвораvoпои́خou， к．А．Мóไع
5．Грацдатıкоі́ Фориалıбцоі́ үıа тпи uпо入оүібтוки́ ү $\lambda \omega \sigma \sigma 0 \lambda$ оүía $\Delta ı \delta .: \Delta \rho$ ．\sum té $\lambda \lambda a$ Mapkavt $\omega v a ́ t o u ~$	5．Eıбаүшүท́ σ т v $\mu о р \varphi о$ оүіки́ аvá入uaŋ Δ дб．：к．Марко́пои入оৎ， к．П．Kovtós
	6．Eıбаүшүท́ otףv $\varphi \omega v \eta$ тıкй каı аvті́入Пџп opiiías $\Delta \iota \delta .:$ к．А．Мпотívŋя

B＇Eگá $\boldsymbol{\mu \eta v o}$

1．Епє६६рүабía $\Sigma \omega \mu a ́ T \omega v K \varepsilon ı \mu \varepsilon ́ v \omega v$
$\Delta \mathrm{l}$ ．：$\Delta \rho$ ．Хápп¢ Папаүعமрүíou

2．Лоүıки́ каı Глம́боа

 $\Delta \mathrm{⿺}$ б．：Kä．Пќтрос Мараүко́я

4．Еıбаүшүท́ $\sigma т \eta v$ Нлєктроvıки́ $\Lambda \varepsilon \xi ı к о ү \rho a \varphi i ́ a ~$
Δ гб．：KaӨ．Хрıоо́чорос Харалацпа́кпя
к．Марі́а Гаßрıŋ入íסou

$\Gamma^{\prime} E \notin a ́ \mu \eta v o$

$\Delta ı \delta .: \Delta \rho . I \omega a ́ v v a ~ M a \lambda a ү a \rho \delta \eta ́$
2．Texvikȩ́ Parsing
$\Delta ı \delta$ ．：Kaө．Гıávvŋ̧ Maïorpos
 т $\omega \mathbf{v} \Lambda \varepsilon \xi ı \kappa \omega ́ v$ Mováס $\omega \mathbf{v}$
$\Delta \iota \delta .: \Delta \rho$ ．Mapía Ţ\＆ßع入દ́кou－Пoúخou
4．Еıбаүшүท́ бтоv＾оүıко́ Проүрациатıбцо́
$\Delta ı$ ．：KaӨ．Гіш́рүос Папакшvotavtívou，
KaӨ．Пavaүı́́tท¢ Tбaváкаৎ，
к．Natáбa Mavouooroú久ou
5．Mnхаvıкŋ́ Мєтáчрабп
$\Delta ı \delta$ ．：$\Delta \rho$ ．E入र́vך EuӨuرíou，
$\Delta \rho . \Sigma t \varepsilon ́ \lambda \lambda a ~ M a \rho к а v т \omega v a ́ t o u ~$

$\Delta^{\prime} E \xi a ́ \mu \eta v o$

$\Delta \mathrm{\iota}$ ．：$\Delta \rho$ ．Г $\rho \eta$ үópŋৎ Σ taïvхáouع $\Delta \rho . \Sigma \tau \varepsilon ́ \lambda ı o \varsigma ~ М п а к а \mu i ́ ঠ \eta я ~$
 Neupwviкá 土íktua $^{\text {a }}$
Δ ıठ．：к．इпúpoc Pártiņ

$\Delta \iota \delta .: \Delta \rho$ ．Kஸ́otac $\Sigma \pi u \rho o ́ m o u \lambda o s ~$
4．Aváктпбף Пגпрочорıம́v
$\Delta ı$ ．：KaӨ．Калацпои́кпя
 Фuбıкŋ́я Г $\lambda \omega \sigma \sigma a \varsigma$

TEXT TO SPEECH SYNTHESIS IN GREEK

Dr.Stelios Bakamidis
ILSP - Department of Speech Technology

Speech is by far not only the oldest means of communication between people but also the most widely used. From the ancient times many attempts were made towards the construction of machines able to speak but the results were rather disappointing for just two reasons: the complexity of the problem and the lack of the necessary technological background.

With today's evolution of computers the problem is well formulated and we can speak about Text-toSpeech Synthesis (TTS) technology that falls into the more general framework of so-called Man-Machine Communication. The general requirement from a TTS system is the ability to read any electronic text in the language it has been designed for, in an intelligible and natural manner.

The TTS conversion is difficult in case we want to produce naturally sounding speech and is still an open research matter. The high quality TTS synthesis eventually appears in the mid-1980s as a result of important advances in speech and natural language processing techniques. A TTS system involves many modules, the most important of them being the text-tophoneme transcription module, the phonetic units database, the prosody generation module and the speech synthesizer.

The Institute for Language and Speech Processing (ILSP) has gained great experience in TTS due to its years long involvement in the design and implementation of Greek text to speech synthesis systems. Initially, the speech synthesis research team of ILSP worked on the improvement of the linear prediction (LP) speech synthesizer platform which had been developed in the framework of the SPIN project. Soon it was realized that this platform had serious limitations and another platform was developed based on the so-called 'formant' synthesizer. The formant synthesizer was more complicated due to the large
number of parameters to be adjusted, but it actually gave very good results in terms of synthetic voice intelligibility and naturalness. The effort was partially funded by the "DIALOGOS" project, but the development was continued and finally resulted to a TTS product for the greek language called "EKFONITIS" which was finally launched to the greek market at the end of 1999 as a CD-ROM for Windows 95/98 and Windows NT operating systems.
"EKFONITIS" is the first TTS product for the Greek language that appeared in the Greek market and it is seen as a sign of the maturity of the Greek TTS technology.
"EKFONITIS" is a tool that combines a powerful speech synthesis engine with a functional and user friendly interface.
"EKFONITIS" offers some special features that are described in some detail below:

FEATURES

- Text preprocessing

EKFONITIS has a module for processing the text prior to its synthesis. The purpose of this module is to find units which cannot be directly read and transcribe them to their diction equivalents for the system to be able to read them. Such units include numbers, special symbols and punctuation marks. Moreover, this module transcribes acronyms or foreign words to greek characters representations according to a table of correspondences which can be updated by the user.

- Prosody

The term prosody refers to the fluctuation of the tone and rhythm of the synthetic voice so that it may sound as natural as possible. This description thought is a simplification of a complicated linguistic phenomenon. For instance, prosody is responsible for the differentiation of positive and negative sentences. EKFONITIS handles non-emphatic positive and interrogative sentences.

- Voice Characteristics modification
"EKFONITIS" offers the user the ability to modify the speed of reading as well as the tone of the synthetic voice.

The speed of reading refers to the rhythm with which "EKFONITIS" speaks, so the reading can be adjusted to be slower or faster.

The tone determines the accent that can be low or high.

OPERATION ENVIRONMENT

"EKFONITIS" is a general purpose tool designed to provide text to speech synthesis services to other text based Windows applications. Special provision has also been made for the automatic incorporation of "EKFONITIS" to the Microsoft Word environment upon its installation.
"EKFONITIS" offers the following mechanisms for text insertion and reading.

- Communication with Microsoft Word

Any text loaded to the Microsoft Word environment can be read by "EKFONITIS" by just pressing the hear button appearing in the selection menu after the installation of "EKFONITIS".

- Drag \& Drop Operation

Any selected .txt and .doc files can be moved via the well known drag and drop operation to the "EKFONITIS" window for automatic synthesis.

- Extensions of the Windows Environment

Any selected .text or .doc file can be read by "EKFONITIS" by simply pressing the right mouse button and left clicking the selection Read.

- Copy from Clipboard

The content of the clipboard, if it is in text format, can
be extracted and read by "EKFONITIS". This feature can be used by any application that can move text to the clipboard.

ILSP continues to improve the formant synthesis technology in the framework of the "EYFONON" project, but at the same time examines other newer speech synthesis technologies like the so-called time domain techniques which promise according to the international literature naturally sounding synthetic speech in less development time. After comparison, the best synthesis technique will be selected and used in a pilot application which will support reading of e-mail via telephone.

SPECTRAL ESTIMATION BASED ON THE EIGENANALYSIS
 OF COMPANION-LIKE MATRICES

Stavroula-Evita Fotinea, Ioannis Dologlou, Nick Hatzigeorgiu and George Carayannis

March 21, 2000

Abstract

This paper presents a new state-space method for spectral estimation based on a companion matrix technique in order to estimate frequency, damping factor, amplitude and phase of exponential sinusoids. The new method, called CSE, is compared against a previously proposed method called HTLS which is based on the use of total least squares. The latter lies among the most promising methods in the field of spectroscopy where accuracy of parameter estimation is of utmost importance. Experiments performed on a simulated NMR signal prove CSE to be more robust in terms of failure rate, especially for Iow signal to noise ratio.

1. INTRODUCTION

Various applications in the field of digital signal processing, including speech processing [3] as well as spectroscopy, i.e. quantification of NMR signals, are employing exponential sinusoidal models in order to represent a signal segment as a sum of exponentially damped complex-valued sinusoids [4]. The generalised sinusoidal model we use is given by

$$
\begin{align*}
s(n) & =\sum_{i=1}^{p}\left(b_{i} \mathrm{e}^{j\left(\phi_{0}+\phi_{i}\right)}\right) \mathrm{e}^{\left(-d_{i}+j 2 \pi f_{j}\right) n} \tag{1}\\
& =\sum_{i=1}^{p} g_{i} z_{i}^{n}, n=\mathrm{O}, \ldots, N-1
\end{align*}
$$

where p is the model order, i.e. the number of sinusoids that comprise the measured signal. The objective is to estimate the frequencies $f_{i j}$, damping factors d_{i}, amplitudes b_{i} and phases $\phi_{0}+\phi_{i}, i=1, \cdots$, p. ϕ_{0} is the zero order phase, whereas ϕ_{i} represents extra degrees of freedom.

Linear prediction attempts to estimate a data point from a linear combination of past or future ones. For the case of forward linear prediction we write

$$
\begin{equation*}
s(n)=\sum_{i=1}^{p} \alpha_{j} s_{n-j} \tag{2}
\end{equation*}
$$

where $a_{j}, j=1, \cdots, q$ are called prediction coecients which are independent of n. Eq. (2) is exact for $q=p$ in the absence of noise. In cases where noise is present or the damping is not exponential Eq. (2) is an approximation and it is preferred to chose q much larger than p (over determined model).

The new method proposed here is called CSE and makes use of a Hankel matrix, a companion matrix based transformation and SVD. The CSE method has been tested and compared to HTLS, the latter being one of the most promising methods for parameter estimation [2]. In the sections that follow the proposed CSE method as well as HTLS are presented and the superior performance of CSE over HTLS is shown through Monte-Carlo based experiments.

2. COMPANION MATRIX BASED SPECTRAL ESTIMATION (CSE)

Let S be the $L x M$ signal observation matrix of a deterministic signal $s(n), n=0, \cdots, N-1$ with rank $p<M$.

$$
S=\left(\begin{array}{lllc}
s(0) & s(1) & \cdots & s(M-1) \tag{3}\\
s(1) & s(2) & \cdots & s(M) \\
\vdots & \vdots & & \vdots \\
s(L-1) & s(L) & \cdots & s(N-1)
\end{array}\right)
$$

with $L>p, M>p$ and $L+M-1=N$
Let $S \downarrow$ be the lower shift (top row deleted) equivalent of S and $S \uparrow$ be the upper shift (bottom row deleted) equivalent of S.

There is an ($L-1$)-th order companion matrix C,

$$
C=\left(\begin{array}{cccc}
0 & 1 & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
\alpha_{1} & \alpha_{2} & \cdots & \alpha_{L-1}
\end{array}\right)
$$

such that,

$$
\begin{equation*}
C S \uparrow=S \downarrow \tag{4}
\end{equation*}
$$

The coecients ot the ($L-1$)-th row of C depict the exact linear combination that holds for the rows of $S \uparrow$. In addition, due to the properties of companion matrices, the eigenvalues of C are the roots of the polynomial $\sum_{j=1}^{L-1} \alpha_{j} z^{-j}$ that represent the peaks of the spectrum of
signal s. Consequently, the computation of the spectral peaks of s may very well be done via the calculation of the eigenvalues of the companion matrix C.

In case of real life signals the peaks are embedded in noise and the rank of matrix S is full. The equality (4) does not hold any longer for a companion C because the signal does not obey linear models. In this case matrix C turns into a companion-like matrix C_{L} where all the elements are slightly perturbed from their theoretical values. The computation of the eigenvalues of the companion-like matrix C_{L} provides an estimate for the spectral peaks of the signal s. When the number of complex peaks to estimate p is known a priori, matrices $S \uparrow$ and $S \downarrow$ can be enhanced by reducing their rank appropriately.

To do so we employ the SVD of $S \uparrow, S \uparrow=U \Sigma V^{T}$. To obtain best results L is chosen equal to $M(+1)=N / 2$ [1],[2], trying i.e. to use an S as square as possible.

Only the p largest singular values are retained to enhance $S \uparrow$. The resulting matrix $S \uparrow_{\mathrm{e}}$ has rank p. Similarly $S \downarrow_{\mathrm{e}}$ is computed. Then C_{L} is computed as $C_{L} \approx S \downarrow_{\mathrm{e}}\left(S \uparrow_{\mathrm{e}}\right)$ - 1 which results from (4), where the matrices $S \uparrow$ and $S \downarrow$ are replaced by their enhanced versions $S \uparrow_{\mathrm{e}}$ and $S \downarrow_{\mathrm{e}}$. Note that since both matrices $S \uparrow_{\mathrm{e}}$ and $S \downarrow_{\mathrm{e}}$ have rank p, C_{L} is also of rank p and this guarantees that only p of the eigenvalues of C_{L} are non-zero.

In this case, signal pole z_{i} estimates are derived by the eigenvalues λ_{i} of $C_{L}, i=1, \cdots, p$. This yields the desired estimates of frequencies f_{i} and damping factors d_{i} from the angles and magnitudes respectively of the eigenvalues of C_{L}. Finally, a computation in a total least squares sense of estimates g_{i} follows, where z_{i} replaced by their estimates. This way, complex-valued linear parameter estimates of g_{i} are calculated, from which amplitude b_{i} and phases $\phi_{0}+\phi_{i}$ estimates are determined as the magnitudes and angles of g_{i} respectively.

3. HTLS method

The HTLS method [2], consists of using the Hankel matrix, performing an SVD decomposition and reducing the size of matrices to order p. Damping factors d_{i} and the frequencies f_{i} are estimated in a total
least squares sense. Phases and amplitudes are estimated using the least squares method.

In detail, the algorithm involves the following four steps:

Step 1.

We compute the SVD of the Hankel matrix of Eq.(3) from the N data points $s(n)$ of Eq.(1):

$$
S_{L X M}=U_{L X L} \Sigma_{L X M} V_{M X M}^{T}
$$

where $L \leq M$ and T devotes the hermitian conjugate. The best results are obtained when we use $L=M(+1)=N / 2$.

Step 2.

We truncate U, Σ, V to order p and compute: $S_{p}=U_{p} \Sigma_{p} V_{p}^{T}$ where U_{p}, Σ_{p}, V_{p}, are the first p columns of $U_{L X L}, \Sigma_{L X M}, V_{M X M}^{T}$.

Step 3.

We compute the solution Q of $U \downarrow_{p} Q=U \uparrow_{p}$, where $U \downarrow_{p}\left(U \uparrow_{p}\right)$ are derived from U_{p} by deleting its top (bottom) row. The eigenvalues λ_{i} of Q give the signal pole estimates, which in turn give the estimates for the damping factors and frequencies of Eq. (1).

Step 4.

The last step is to compute the phases and the amplitudes. This is done by finding a least squares solution to Eq. (1), with z_{i} replaced by the estimates and $s(n)$ given by the signal data points.

4. EXPERIMENTAL RESULTS

Both CSE and HTLS have been tested via simulation on a typical NMR signal, in order to evaluate the improvement in accuracy of parameter estimation when using the two methods in the modeling problem defined by Eq.(1). This representative example simulating a typical 31 P NMR signal of perfused rat liver is presented below.

The ${ }^{31} \mathrm{P}$ NMR signal comprises a fifth-order model function given in Table 1 by which N data points uniformly sampled at 10 KHz are exactly modeled. These data points are perturbed by Gaussian noise whose real and imaginary components have standard deviation σ_{v}. Root mean-squared errors of the
estimates of all signal parameters are computed using 500 noise realizations (excluding failures) at each considered σ_{u} (when not all peaks are resolved within specified intervals lying symmetrically around the exact frequencies we consider that a failure has occurred). The halfwidths of the intervals are respectively $82,82,82,43$ and 82 Hz , the values derived from the Cramer-Rao bounds of peaks 4 and 5 at the noise standard deviation where these intervals are touching each other. The estimated model order is set to 5 . The Cramer-Rao lower bounds are derived from the exact parameter values and σ_{v}.

In Fig. 1 the real part of the fast fourier transform of the simulated ${ }^{31} \mathrm{P}$ NMR signal is depicted.

peak i	$f i(\mathrm{~Hz})$	$d i(\mathrm{rad} / \mathrm{s})$	$b i$	$\psi i^{(a)}$
1	-1379	208	6.1	15
2	-685	256	9.9	15
3	-271	197	6.0	15
4	353	117	2.8	15
5	478	808	17.0	15
(a) $\psi i=\phi_{0} * 180 \pi$ expresses the phase in degrees				

Table 1: Exact parameter values of the simulated ${ }^{31} P$ NMR signal, modeled by Eq.(1) with $\phi_{i}=0$ and number of peaks equalling 5.

Comparative results between CSE and HTLS are presented below for different noise standard deviations. The S / N ratio at peak i is defined by $\log _{10}\left(b_{I}^{2} /\left(2 \sigma_{V}^{2}\right)\right)$.

In Fig. 2 failure rates of both CSE and HTLS methods are depicted as a function of noise standard deviation. Clearly the CSE method is more robust. Graphical representation of results does not allow for a straight forward comparison of the improvement achieved because of the rather small differences in parameter estimation. As seen in Fig. 3 the root meansquared error is plotted against the S / N ratio achieved for the frequency estimation of peak 1. The vertical dotted line denotes the S / N ratio beyond which the badruns of HTLS and CSE methods are the same. To clearly present the results, in Table 2 root meansquared errors of frequency, damping factor, amplitude and phase are depicted respectively for peak 1 of the ${ }^{31 P}$ NMR signal for both methods. The same quantities for peak 4 are presented in Table 3.

The above results suggest that the two methods perform similarly for high S / N ratio ($\sigma_{v} \in(0,1)$). However, for low S / N ratio ($\sigma_{v} \in(1,2)$), despite the similarity of the root mean-squared errors of all parameters estimated, the CSE method performs better than HTLS due to its lower failure rate (smaller number of bad runs compared to HTLS).

5. CONCLUSION

In this paper a new state-space method, called CSE, for spectral estimation was presented. CSE makes use of a companion-like matrix technique and SVD, in order to estimate frequencies, damping factors, amplitudes and phases of exponential sinusoids. CSE was tested in spectroscopy which lies among the most demanding applications of digital signal processing in terms of accuracy. CSE was compared to the HTLS method, that is the state-of-theart method in spectroscopy. A representative example on a typical ${ }^{31} \mathrm{P}$ NMR signal was presented and the superior performance of CSE over HTLS was shown, especially for low signal to noise ratio.

References

[1] I.Dologlou and G.Carayannis, "LPC/SVD analysis of signals with zero modeling error", Signal Procesing, 23 (3), pp. 293-298, 1991.
[2] S. van Huffel, H. Chen, C. Decanniere and P. van Hecke, "Algorithm for Time-Domain NMR Data Fitting Based on Total Least Squares", J. Magn. Res., Series A 110, pp. 228-237, 1994.
[3] R. Kumaresan and D.W. Tufts, "Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise", IEEE Trans.Accoust., Speech, Signal Proc., ASSP 30 (6), pp. 833-840, December 1982.
[4] S.Y.Kung, K.S.Arun and D.V. Bhaskar Rao, "Statespace and singular-value decomposition-based approximation methods for the harmonic retrieval problem", J. Amer. Opt. Soc., 73 (12), pp. 1799-1811, 1983.

Figure 1: Fast Fourier transform (real part) of the simulated ${ }^{31} P$ NMR signal.

Figure 2: Percentage of times that CSE (.-* .-) and HTLS $(\cdots \times \cdots)$ fail to resolve all peaks of the simulated signal using $N=100$ as a function of noise standard deviation σ_{u} using $M=N / 2=50$.

$\sigma_{\mathrm{v}} /$ Method	$f_{1}(\mathrm{~Hz})$	$d_{1}(\mathrm{rad} / \mathrm{s})$	b_{1}	$\psi_{1}(\mathrm{deg})$
$0.1 /$ CSE	0.3011	1.8590	0.0328	0.3122
$0.1 / \mathrm{HTLS}$	0.3486	2.0322	0.0377	0.3652
$0.3 /$ CSE	0.9119	5.5134	0.0989	0.9841
$0.3 / \mathrm{HTLS}$	0.9710	5.8240	0.1334	1.0699
$0.5 /$ CSE	1.4723	9.4735	0.1680	1.5292
$0.5 / \mathrm{HTLS}$	1.4791	9.5101	0.1739	1.5410
$0.7 /$ CSE	2.0627	13.4974	0.2559	2.3007
$0.7 /$ HTLS	2.0735	13.3832	0.2515	2.3116
$0.9 /$ CSE	2.7284	16.7999	0.2956	2.8022
$0.9 / \mathrm{HTLS}$	2.8270	18.7588	0.3641	2.7850
$1.1 /$ CSE	3.3993	20.3944	0.3607	3.6686
$1.1 / \mathrm{HTLS}$	3.5465	21.2293	0.3874	3.7854
$1.3 /$ CSE	3.9085	25.4938	0.4488	4.0346
$1.3 /$ HTLS	3.9186	25.1657	0.4432	4.0413
$1.5 /$ CSE	4.5165	27.9694	0.5193	4.8495
$1.5 /$ HTLS	4.4663	27.1645	0.5136	4.7807
$1.7 /$ CSE	5.0495	33.9128	0.5593	5.2325
$1.7 /$ HTLS	5.0922	32.4640	0.5552	5.3110
$1.9 /$ CSE	5.8908	36.4888	0.6509	5.8916
$1.9 /$ HTLS	5.9969	35.0291	0.6613	6.0019

Table 2: Root mean-squared errors of frequency, damping factor, amplitude and phase for peak 1 of the ${ }^{31}$ P NMR signal as a function of noise standard deviation σ_{v}. The values below the double horizontal line correspond to smaller number of bad runs for CSE compared to HTLS, whereas the values above to the same number.

Figure 3: Root mean-squared errors of CSE (.- * .-) and HTLS ($\cdots \times \cdots$) estimates of frequency f_{1} of peak 1 as a function of the peak S / N ratio which corresponds to a standard deviation $\sigma_{v} \in(0,2)$.

$\sigma_{\mathrm{v}} /$ Method	$f_{1}(\mathrm{~Hz})$	$d_{1}(\mathrm{rad} / \mathrm{s})$	b_{1}	$\psi_{1}(\mathrm{deg})$
$0.1 /$ CSE	0.7782	4.5483	0.0724	1.5442
$0.1 / \mathrm{HTLS}$	0.7771	4.5538	0.0726	1.5396
$0.3 / \mathrm{CSE}$	2.2771	14.4338	0.2262	4.6035
$0.3 / \mathrm{HTLS}$	2.2812	14.2099	0.2225	4.5913
$0.5 / \mathrm{CSE}$	3.8266	23.5800	0.3769	7.5074
$0.5 / \mathrm{HTLS}$	3.7338	23.4150	0.3756	7.2648
$0.7 / \mathrm{CSE}$	5.3719	36.7186	0.5882	10.6468
$0.7 / \mathrm{HTLS}$	5.3089	35.4068	0.5689	10.4598
$0.9 / \mathrm{CSE}$	7.3128	45.5368	0.7538	14.4414
$0.9 / \mathrm{HTLS}$	7.2314	42.9739	0.7246	14.0820
$1.1 / \mathrm{CSE}$	9.0421	65.8090	1.0857	18.0785
1.1/HTLS	8.9304	56.8974	0.9809	17.5237
$1.3 / \mathrm{CSE}$	10.8140	85.5737	1.4065	21.1541
1.3/HTLS	10.6465	65.6707	1.2009	19.9943
$1.5 / \mathrm{CSE}$	13.7314	115.5441	1.9815	26.8592
1.5/HTLS	13.8219	76.4961	1.5116	25.8650
$1.7 /$ CSE	14.7433	142.9655	2.3874	28.5107
1.7/HTLS	14.3773	94.3041	1.9823	25.2497
$1.9 /$ CSE	17.1385	238.9632	3.3696	32.7830
1.9/HTLS	16.9766	108.6047	2.4746	28.6915

Table 3: Root mean-squared errors of frequency, damping factor, amplitude and phase for peak 4 of the ${ }^{31} P$ NMR signal as a function of noise standard deviation σ_{v}. The values below the double horizontal line correspond to smaller number of bad runs for CSE compared to HTLS, whereas the values above to the same number.

Sappho Multimedia Bilingual Dictionaries for Tourists
Danai Anagnostopoulou,
Elina Desipri,
Maria Gavrilidou
ILSP - Electronic Lexicography Department

The Sappho Multimedia Dictionaries have been developed by the Electronic Lexicography Department of the Institute for Language and Speech Processing and consist of a set of bilingual bi-directional multimedia dictionaries. Greek language is either source- or target-language in formulation with one of the following languages: English, French, German, Spanish, Russian.

Macrostructure of the dictionary

Sappho is a set of dictionaries for foreigners, and especially for tourists visiting Greece. Therefore, the lemma list is subcategorised in communicational circumstances, which foreigners will most probably encounter. Specifically, it contains 4,082 lemmas, of which 526 are multiword lemmas (phrases, expressions, complex nominals etc). The methodology adopted for the compilation of the lemma list consisted of the following steps:

- comparative study of several bilingual dictionaries as well as dialogs for tourists, in order to extract the commonly found information included therein,
- creation of a catalog of tourist internet sites and critical assessment of the information provided to the users
- extraction of the list of most frequent Greek words from the ILSP corpus
- selection of the final lemma list, from the candidate lemma lists compiled from the three above sources.
The basic lemma list has been augmented by catalogs of the most important geographic locations, monuments, etc.

Microstructure of the dictionary

Every lemma carries the following information:

- Phonetic representation, transcribed according to the International Phonetic Alphabet.
- Grammatical category, which defines the lemma

Part of Speech.

- Examples reflect the sense discrimination of the lemmas; the examples listed for each lemma exemplify its distinguishable meanings. Simple and understandable examples (with expressions of everyday spoken Greek) have been chosen, which are commonly used by Greek native speakers and which give the typical use of the lemma in specific communicational circumstances. These examples have been selected in order to cover the interests of different people, who belong to different levels of language learning.
- Synonyms correspond to the examples (that is, to the senses of each lemma), due to the fact that every distinguishable sense of the lemma may have a different synonym.
- Related words list the derivatives of the lemma, which are also included in the lemma list.
- Category classifies the lemma in one of the communicational circumstances within which the lemma can be encountered. The categories are the following:
- holidays
- resort
- nutrition
- institutions / state
- consumer goods
- state of emergency
- public relations
- economy
- civilization
- travel
- general vocabulary.
- Subcategory constitutes a more detailed structuring of the communication circumstances.
- Translational equivalent into the target language is given for each sense.
The lemma list and the information provided has been translated into the five mentioned languages (English, French, German, Spanish and Russian) which are combined with Greek.

The selection of the appropriate translational equivalent
was not always straightforward, especially in the case of meanings pertinent to the Greek culture, whose lexical realisation may not exist in the target languages. The problem is that these meanings do not precisely correspond to specific words in every foreign language as is the case with names of typical Greek dishes, Greek dances, instruments etc. The solution provided in these cases was the descriptive definition, and the placement of the specific meaning in context through the example.

The Sappho dictionary is accessible to the user through a multimedia interface, which allows for the search of a word via specific fields of the database (namely lemma, category and subcategory), using Greek either as source or as target language. Thus it caters for two different modes of usage:
(a) the user knows the word in his/her own language and wishes to know the respective Greek word and its usage, or
(b) the user comes across a Greek word whose meaning s/he ignores and wants to look it up in the dictionary.

Та прос бпиобíqưך ápӨра прє́пєı va uпоßá入ло－

 15125 Парádвıбоৎ Auapouđíou каı $\sigma \varepsilon$ П入єктроvıки́ $\mu о \rho \varphi \eta ́ ~ \sigma т \eta ~ \delta \iota \varepsilon u ́ \theta u v \sigma \eta: ~$
 $\theta \dot{́} \mu \mathrm{a}$ ．

＇О入а та үра甲ク́цата прє́пєı va кататíӨвvтаı $\sigma \varepsilon \mu о \rho$－
 $\lambda n ́ \varsigma ~ a v a ́ \lambda u o n ¢ ~(h i g h ~ r e s o l u t i o n ~ 300 ~ d p i) . ~$

 ракти́ре६ т $\omega \mathrm{v} 11$ бтіүны́v：

Daille，B．，E．Gaussier \＆J．M．Lange（1994）． Towards automatic extraction of monolingual and bilingual terminology．In Proceedings of COLING 94，515＿521．Jackendoff，R．（1996）． Languages of the Mind．The MIT Press．
 тоúvtaı $\sigma \varepsilon$ пapev θ ह́ $\sigma \varepsilon ı \varsigma ~ \mu \varepsilon ~ т о ~ o ́ v o \mu a ~ t o u ~ \sigma u ү y \rho a-~$

 ava甲ор ́́（Jackendoff，1996；Daille et al，1994）．

 $200 \lambda \varepsilon ́ \xi \varepsilon \omega v$ o ε Times New Roman Характи́рєৎ t ω v 10 бтіүнஸ́v．
 бع入íd $\varepsilon \varsigma$ A4．

 Өuvon，tп $\lambda \dot{\varepsilon} \varphi \omega \mathrm{vo}$ кal fax tou ßaбıкой бuүүpa甲éa．

Instructions to Authors

Contributions should be submitted in 3 hard copies to： ILSP－Institute for Language and Speech Processing 6 Artemidos \＆Epidaurou str．， 15125 Paradisos Amarousiou and by e－mail at：eleni＿e＠ilsp．gr with the indication Logonavigation in the Subject line．

Articles should be submitted as Word documents，in Times New Roman， 12 pt with double spacing．

All graphs must be submitted in ．tif format or in any other high resolution $\mathbf{3 0 0} \mathbf{d p i}$ form．

References should follow the cited pattern in Times New Roman， 11 pt：

Daille，B．，E．Gaussier \＆J．M．Lange（1994）． Towards automatic extraction of monolingual and bilingual terminology．In Proceedings of COLING 94，515＿521．Jackendoff，R．（1996）． Languages of the Mind．The MIT Press．
References inside the body text should have the form i．e．（Jackendoff，1996）or（Jackendoff，1996； Daille et al，1994）．

Footnotes are placed at the bottom of each page in Arial Greek， 9 pt．

An abstract of 200 words in Times New Roman， 10 pt， precedes the body text．

Submissions should not exceed 10 pages（A4）

Every submission should be accompanied by a note with the name，address，e－mail address，telephone and fax number of the main author．

Articles submitted to Logonavigation should not be published elsewhere before．

