АОГОПАОНГНГН

ENHMEPSTIKO Δ E 1 TIO

＂АОГОПАОНГНГН＂

$\Delta \varepsilon к \varepsilon ́ \mu ß \rho ı о \varsigma ~ 1997$
Tعúxoc 3

Епıбтףцоviкó̧ ҮпєúӨuvo̧：

KaӨпүпти́я Гıஸ́pyos Kapaүıávvŋs

Үпєи́Өuvŋ＇Екбобп¢：

$\Delta \rho . I \omega a ́ v v a$ Ma入aүapঠ́n

ミuvepүа́тєя：
$\Delta \rho . \Sigma т \varepsilon ́ \lambda ı о я$ Мпакацíסŋя
Гіш́рүоя Мıкро́я
Avaotáбıoc Патрıка́коৎ
$\Delta \varepsilon ́ \sigma \pi o ı v a \Sigma$ кои́тарך

Графíбтая：
’Артєцıся Г $\lambda а ́ \rho о и$

$\Delta ı \varepsilon$ úधuvaŋ：

Артє́цıסоৎ \＆Eпıठаи́рои
15125 Пара́бعıбоৎ A 2 ароибíou
$\tau \eta \lambda .: 6800959$
fax： 6854270
e－mail：ioanna＠ilsp．gr
http：／／www．ilsp．gr

Tףv $\varepsilon u \theta u ́ v \eta ~ \tau \omega v ~ к \varepsilon ı \mu \varepsilon ́ v \omega v ~ \varepsilon ́ x o u v ~ o l ~$ ouүypa甲عís．

Н хрпиатобо́тпоп тпৎ દ́кסобпৎ autท́ৎ ع́үוvє aпó та проүра́ $\mu \mu$ ата тпя ГГЕТ ＂Грачєía $\Delta ı a \mu \varepsilon \sigma о \lambda a ́ ß \eta \sigma \eta \varsigma " ~ к а ı ~$
＂AvӨمஸ́mıva Δ íktua＂．

H＂лоүоплоŋ́үŋбף＂ठıavє́ $\mu \varepsilon \tau a \iota ~ \delta \omega \rho \varepsilon a ́ v$.

Пívaкая Пعрıєхонє́vшv

Eıбаүшүıкó $\Sigma \eta \mu \varepsilon і ́ \omega \mu a$
$\sigma \varepsilon \lambda .2$

1．Seminar and Meeting of the Greek Human Network
бع入． 2

2．Trends in modern speech recognition systems $\sigma \varepsilon \lambda .4$

3．Speech Recognition on the Internet
$\sigma \varepsilon \lambda .9$

4．The use of evaluation in the Aupelf－Uref and related Language Engineering Actions．
 $\sigma \varepsilon \lambda .16$

1．EӨviкó Мعтбóßıo По入utعхveío
бع入． 21
 пои а甲орои́v $\sigma т \eta v ~ Е п \varepsilon \xi \varepsilon \rho ү а \sigma i ́ a ~ Ф и \sigma ı к \eta ́ \varsigma ~ Г \lambda \omega ́ \sigma \sigma а \varsigma ~$
$\sigma \varepsilon \lambda .21$

2．Оıкоvонıкó Паvєпьбти́цıо AӨŋvஸ́v
бع入． 24

ซદ入． 24

III．Пapouoíaoŋ vé $\omega v \beta ı \beta \lambda i ́ \omega v$
$\sigma \varepsilon \lambda .28$

V．Еıठŋ́бєıৎ үıа тף Г $\lambda \omega \sigma \sigma ı к \grave{~ T \varepsilon \chi v o \lambda o ү i ́ a ~}$

Еıбаүшүıко́ $\sum \eta \mu \varepsilon i ́ \omega \mu a$

 Глшбоıки́я Texvo入oyías．

 бтпv Eпıкоıvшvía каı Texvo入oүía Фفvฑ́s， EuroSpeech＇97．इто бє $\mu \mathrm{vá} \mathrm{\rho ıo} \mathrm{\sigma u} \mathrm{\mu} \mathrm{\mu} \mathrm{\varepsilon т} \mathrm{\varepsilon íxav} \mathrm{\delta ıa-}$
 кó $\theta \varepsilon ́ \mu a ~ t \omega v ~ \varepsilon І \sigma \eta \gamma \eta ́ \sigma \varepsilon \omega v ~ t o u ~ \sigma \varepsilon \mu ı v a \rho i ́ o u ~ \eta ́ t a v ~ \eta ~$ ＂Avaүvต́pıon Фఉvท́s＂（Speech Recognition）．इтo

 ふ́v пои поовли́өŋкаv．То бєцıvápı праүнато－

 tou＾óyou．

 $\mu \varepsilon \tau \varepsilon ́ \chi o u v ~ \sigma т о ~ A v \theta \rho \omega ́ m ı v o ~ \Delta i ́ к т и о ~ Г \lambda \omega \sigma \sigma ı к и ̆ я ~ T \varepsilon-~$
 a甲єvós $\mu \varepsilon v$ т ηv a $\alpha \lambda \eta \lambda о \varepsilon v \eta \mu \varepsilon ́ \rho \omega \sigma \eta ~ \tau \omega v ~ \mu \varepsilon \lambda \omega ́ v ~$ тои ठıкти́ои ачвтє́ $\rho о и ~ \delta \varepsilon ~ т \eta v ~ \varepsilon v \eta \mu \varepsilon ́ \rho \omega \sigma \eta ~ к а ı ~ a ́ \lambda-~$

 $\sigma \tau \eta v$ E入入áסa．

 пробпáӨвıа ठпнıоирүías $\gamma \lambda \omega \sigma \sigma a \rho i ́ o u ~ o ́ \rho \omega v ~$ Глаббוки́я Teגvo入oүías каı Плпрочорıки́я．
 סıорүáv $\omega \sigma \eta$ $\sigma u v \varepsilon \delta \rho i ́ \omega v, ~ \sigma u \mu \pi о \sigma i ́ \omega v, ~ \sigma u v \varepsilon \delta \rho ı a ́-~$ $\sigma \varepsilon \omega v, ~ \sigma u v a v t \eta ́ \sigma \varepsilon \omega v$ ع $\rho \gamma a \sigma i ́ a ৎ, ~ \chi \varepsilon ı \mu \varepsilon \rho ı v \omega ́ v ~ \sigma \chi o-~$
 גvo入oyías．

1．Seminar and Meeting of the Greek Human Network

Professor George Carayannis
Institute for Language and Speech Processing
Epidaurou \＆Artemidos
Paradeisos Amarousiou
15125 Athens，Greece

We continue our regular meetings of the Greek Human Network in Language Engineering（LE）． We have already met several times，but today＇s meeting is an extraordinary one，because we have with us three very distinguished friends as our invited speakers．

I would like to say that I am extremely happy and proud to see J．Makhoul，J．Mariani and J．P． Haton between us．We first met when we were young but Rhodes is a place where we feel young in any case．I don＇t think that it is necessary to introduce you to the members of the network because they already know you as you are among the pioneers．

I will try instead to introduce the network to you； who we are and what we are trying to do．The Greek Human Network in Language Engineering is something like ELSNET at the Greek national level．Both industrial and academic members are represented in the network．With our discussions we are trying to improve collaboration and share know－how．We are also trying to organize training in LE for younger persons．

We have already presented our activities in detail between us during the last two years，and we know exactly what each laboratory is doing．We took a step further with the publication of a specialized Newsletter and the organization of focused conferences on specific subjects like today＇s conference which focused on speech recognition issues．We have established bilateral and multilateral cooperation，especially in the framework of two national programs．We want to move towards better cooperation and develop
real synergy between us. We know that is difficult but we want to try. We feel that the French model of cooperation is very interesting. Personally I have some experience of this model not only because I spent many years working in France and in Belgium, but also because Joseph has already involved me in an evaluation exercise of AUPELF, the French association which is trying to promote active co-operation between its members. Joseph will explain to us how AUPELF is working, developing synergy among the participating laboratories.

Cooperation is extremely useful in the case of difficult applications needing infrastructure and resources. CSR and man- machine dialogues are such applications. As an example I can say that we don't yet have a common Greek reference corpus in Speech recognition. Know-how exists in Greece in five laboratories:

In the ILSP Department of Speech Technology, the WCL in the University of Patras, the Knowledge Company in Patras, the Athens University Department of Computer Science and the Polytechnic School of Chania in Crete.

After having developed isolated word and connected Speech Recognition Systems we are starting to develop CSR systems.

We feel that we are not in good shape for the development of this technology and we hope that this network will act as a catalyst for future developments. We need to have a platform recognizing modern Greek. It is also a political choice and we have to do that. You have probably heard our minister of development explaining these issues during the opening ceremony. John and Jean Paul will speak to us about these technologies. I know how experienced you both are. Please tell us some secrets!

I remember when Speech Recognition was not mature yet, a pessimistic attitude was adopted justified by a particular view of the human
recognition ability: The speech signal was only used in humans to trigger an enormous amount of a priori knowledge acquired with the participation of our five sensory devices during life. This a priori knowledge is adequately structured along the years and it has particular weight in the recognition process. This is entirely true.

It was also claimed that some good results in Speech Understanding are possible within very restricted linguistic environments with adequate modelling of pragmatic information related to the execution of specific tasks carried out by machines. Also "his master's voice" was the secret for good accuracy in recognition. We know today, given the latest developments, that a small, and not an enormous amount of a priori linguistic knowledge is necessary to a CSR system, and that speaker adaptation is workable.

Given the recent results in CSR with many commercial systems in the market, it seems that information society is entering into a new era.

It is true because CSR efficiently implemented, will open the door for the use of computers by everybody, thus contributing to significant development of the I.S.

We are very much interested in your personal opinion on issues like:

- How to avoid rediscovering the wheel
- How to avoid the traps
- How far we can go in fine tuning CSR systems

We all know that speech is like a female, very robust and also fragile. We know that special care is necessary in order to approach it or her. Trial and error is a good method but we don't have the time.

Our initial programme was structured in a slightly different way. We made a small modification in order to give John the opportunity to catch his plane. He will be our first speaker.

2. Trends in modern speech recognition systems

Professor Jean-Paul Haton
LORIA
Universitı Henri Poincarı, Nancy 1
BP 239-54506 Vandoeuvre, France
email: jph@loria.fr

Automatic speech recognition has reached the point where practical applications are now available for various tasks: dictation of texts, telematic services, simple transaction systems, etc. However, the problem is far from being completely solved, and many issues are still to be solved.

Most of today's research and development projects in ASR are based on a statistical approach of the problem. The recognition of a sequence of words w represented as a concatenation X of acoustic vectors xi (e.g., MFCC coefficients) consists of finding the answer $\widehat{\mathbf{w}}$ that maximizes the probability $\mathrm{P}(\mathrm{W} / \mathrm{X})$:

$$
\hat{W}=\arg _{w} \max P(W) P(X / W)
$$

$\mathrm{P}(\mathrm{X} / \mathrm{W})$ is provided by an acoustic model, whereas $P(W)$ is obtained by a language model. Both models are learned during a preliminary phase from a huge amount of speech data.

The principle of acoustic models is to capture the variability of speech (intra- and inter-speaker) through some stochastic automata. Two main categories of models are commonly used:

- hidden Markov models (HMM) in which each state of a model is related to a single speech frame or acoustic vector xi. HMMs are by far the most popular models to date;
- segment models (like the stochastic trajectory model, STM, and others) in which each state of a model is related to a sequence of speech frames. Such models make it easier to represent the strong correlation that exists between successive frames.

Present trends in acoustic modelling for continuous speech recognition are related to the improvement of stochastic models: use of contextual units for instance allophonic variations of a phoneme according to its left and right contexts, tying of model parameters between units, modelling of unit duration, use of discriminative training methods (e.g., Maximum Mutual Information training), adaptation of model
topology, etc.
Language models constitute the second important knowledge sources for speech recognition. These models provide an approximation of the a priori probability of a sequence of words usually under the form of bior trigram models (i.e., only the local successions of two or three words are modelled). The learning of n-gram probabilities implies the availability of very large corpora of texts. Language models make it possible to discard unlikely sequences of words. They are associated in most systems with efficient search algorithms for an effective pruning of the solution space (Viterbi search, stack decoding, A* algorithm, etc.). Again, present issues in language modelling concern the improvement of the models: use of semantic n-grams instead of pure syntactic ones (such semantic n-grams are related to the distribution of words within a complete text or discourse and not only to local constraints), combination of n-gram models with classical syntactic knowledge, etc. The evaluation of models is also addressed, based on the measure of perplexity or entropy.

Despite the important progresses made during the past few years, the performance of present ASR systems is highly task dependent. For instance, the error rate obtained in laboratory tests for speaker independent conditions ranges from 0.3% for continuous digit recognition up to 8% for letter spelling and 55% for telephone conversations. Improving the robustness of ASR is thus presently a major issue for the deployment of systems in every day life. A major cause in the degradation of performance is the mismatch that occurs between training and testing conditions. This is due to the high variability of speech (related to the speaker, the microphone and the recording conditions, etc.) as well as to various types of noise added to the speech signal (ambient noise, transmission channel noise, etc.). A large number of adaptation methods have been proposed in order to reduce the mismatch at the different processing levels (and not in an exclusive way):

- signal processing level: recording techniques (microphone arrays), adaptive filtering, spectral subtraction, spectral and cepstral normalization;
- speech analysis and feature extraction:
improvements have been brought to speech
analyzers, especially by taking into account knowledge coming from auditory perception and psycho-acoustics (models of the ear, perceptually-grounded analyses like PLP or RASTA-PLP, etc.);
- acoustic models: parallel model combination, PMC (for combining clean speech and noise stochastic models), bias removal, statistical adaptation through linear regression (MLLR) or Bayesian estimation;
- language models: in that case, the problem is to cope with changes in languages that introduce linguistic phenomena not present in the training data sets. Several adaptation methods have been proposed: backing-off, use of a cache model, various interpolation schemes, maximum entropy model, etc. It should be noted that these methods require large amounts of data to be effective.

Even though most presently available ASR systems are of a statistical nature, it remains worthwhile to think about ways for incorporating explicit knowledge about the speech communication process in these systems. We have already mentioned the use of perceptive knowledge in speech analyzers. Other aspects are also interesting: allophonic models and decision trees in HMMs, language models and search algorithms integrating linguistic knowledge, multi-band recognition paradigm (consisting of carrying out several asynchronous recognition processes in parallel in different frequency bands, etc.), articulatory approaches to ASR (that necessitates to carry out an inversion of the articulatory models used for speech production), integration of the recognition and understanding processes in a unified framework, etc.

In conclusion, ASR has now sufficiently advanced to be operational in several application fields. However, in order to be deployed to a larger scale, especially for naive users, systems must still gain in robustness. This improvement of robustness particularly necessitates the design of efficient adaptation schemes at all processing levels, from signal processing to sentence understanding. Solving this problem will represent a decisive step toward the practical use of ASR systems in everyday life.

Greek Human Network - Rodos, September 26, 1997

Trends in Modern Speech Recognition Systems

Jean-Paul Haton

LORIA- Nancy, France

- Basic Principles
-General architecture of an ASR system
-Framework of statistical ASR
- Acoustic Modeling
- Frames vs Segments
- Important issues
- Language Modeling
- Improving Robustness of ASR
- Signal processing
- Model adaption
- Knowledge in ASR
- Conclusion

Summary of Main ARPA Tasks

When	Task	Trn Hrs	Voc. kwd	Test Mode	PP	WER $\%$
$87-92$	RM	4	1k	Closed	60	4
$92-94$	WSJ	12	$5 k$	Closed	50	5
$92-94$	WSJ	66	$20 k$	Open	150	10
$94-95$	NAB	66	$65 k$	Open	150	7
$95-96$	BN	50	$65 k$	Open	200	30

RM Naval Resource Management Task
WSJ Wall Street Journal
NAB North American Business News
BN Broadcast News

Principles of Statistical Speech Recognition

- Speech is parameterized into a sequence of acoustic vectors (e.g. MFCC):
$\mathbf{X}=\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{v}$
- An utterance is made up of a sequence of words:

$$
\mathbf{W}=\mathbf{w}_{1} \mathbf{w}_{2} \ldots \mathbf{w}_{N}
$$

- Recognition consists of finding the word sequence $\hat{\mathbf{W}}$ which maximizes $\mathbf{P}(\mathbf{W} / X)$:

Figure 1.1: General speech recognition system

A three state HMM phoneme model. The trajectories of $s, T(s)$, in different phonetic contexts are modeled by mixture probability densities. For the given trajectory of $s^{\prime} \neq s, T\left(s^{\prime}\right)$,never appeared in training data, $p\left(T\left(s^{\prime}\right) \mid s\right)$ will be as high as $p(T(s) \mid s)$. HMM therefore cannot accurately model trajectories.

Acoustic Modeling

- Principle: frame-based vs segment-based models
- Hidden Markov Models (HMM)
- Discrete / continuous / semi-continuous
- Mixtures of pdfs
- Segment or T rajectory Models
- Important issues:
- Model topology
- Correlation modeling
- 2nd order HMM
- Adaptation of the topology
-Context-dependent units
- Duration modeling
- Parameter tying (senones, genones, etc.)
- Discriminative training:
- Maximum Likelihood Estimation (MLE) vs
- Maximum Mutual Information (MMI)

Hybird connectionist/stochastic models

- Principle: combining the complementary properties of the two models
- Various solutions:
- ANNs as front-end of HMMs
- ANNs as postprocessor of HMMs
- Unified models

Language Models

- Goal: estimation of the probability $\mathbf{P}(\mathbf{W})$ of the word sequence $W=w_{1} w_{2} \ldots w_{N}$

$$
P(W)=\prod_{i=1}^{N} P\left(w_{1} w_{2} \ldots w_{i-1}\right)
$$

- Models vs Search
- Usual approximation by an ngram model (bigram or trigram models)
- Present issues
- Evaluation of models: perplexity/entropy
- Semantic ngram models
- Adaptation

Adaptation

- Variability sources of speech
- Speaker, task and context
- Microphone
- Noise added (reverberation, other speakers, etc.)
- Channel
- Reducing the mismatch between training and test conditions
- Adaptation process - Supervised/unsupervised
- Main methods
- Signal processing for speech enhancement:
spectral subtraction, cepstral mean normalization, etc.
- Acoustic adaptation
- Parallel Model Combination: PMC (Gales and Young, 1992)
- MAP estimation: Bayesian approach (Lee et al., 1991)
- Maximum Likelihood Liner Regression:

MLLR (Bellagarda et al., 1992)

- Language Model Adaptation

Figure 1.2: Simplified distortion framework

Principle of Linear and Non-Linear Spectral Subtraction

Principle of Parallel Model Combination (PMC) (after Gales and Young, 1993a)

The different steps involved in minimum error training

Language Model Adaptation

- Principle: to cope with changes in languages that introduce linguistic phenomena not present in the training data sets.
- Important issue for improving system robustness
- Effectiveness of adaptation can be measured by the reduction of perplexity on a test corpus
- Requires large amount of data
- Main methods:
- Backing-off (Katz, 1987)
- Cache model (Kuhn,1988)
- Linear interpolation (Jelinek,1990)
- Markovian interpolation (Jelinek,1992)
- Nonlinear interpolation (Ney,1994)
- Maximum entropy (Della-Pietra et al., 1992 -

Rosenfeld, 1996)

- Semantic clustering (Kneser et al., 1997)
- Adaptation of language models to recognizer errors or to an application

Knowledge in ASR systems

- Psycho-acoustics and signal analysis: ear models
- Knowledge-based phonetic decoding
- Phonetic knowledge in HMM system design
- Allophonic model
- Phonetic decision trees
- Articulatory approach to speech recognition
- Linguistic knowledge in search and language models

Block diagram of the RAST A-PLP analysis.

Phonetic Decision Trees

Main principle of Multi-Band Systems

The speech chain (adapted from Peter Denes and Eliot Pinson, The Speech Chain)

ARTICULATORY APPROACHES TO ASR

(i) Recognition phase

(ii) Re-synthesis phase

BLACKBURN and YOUNG

ROSE, SCHROETER and SONOIHI

Conclusion

- Important improvements in ASR performance during the past decade based on stochastic models:
- Telematics application
- Dictation machines
- Simple dialog inquiry systems
- ... But performance is highly task dependent:
- Continuous digits: 0.3% error rate
- Letter spelling: 8% error rate
- Telephone conversation: up to 55% error rate
- Necessity of improving the robustness of recognition
- Signal processing
- Feature extraction
- Acoustic models
- Language models
- Dialog
integration of various knowledge sources (a priori or contextual)
- Open and unexplored issues at all these levels!

3. Speech Recognition on the Internet

John Makhoul
Chief Scientist BBN Technologies, GTE, Cambridge, MA

The Internet has become a global, multi-modal, telecommunications medium and information resource. It promises to combine the capabilities of mail, telephone, cable, and computer in a web of networked capabilities. Designing and building appropriate interfaces to this complex web of capabilities will be necessary for people to take maximum advantage of all this power and flexibility. Voice input/output will likely form one of the important modalities for allowing people to interface smoothly and seamlessly with this new world of information and entertainment.

Various speech processing technologies will no doubt play important roles in the development of systems that will enhance human/human and human/machine communication worldwide. In this paper, we review two of these technologies: speech recognition and language understanding.

Speech Recognition

Of the different methods that are available to interact with machines, perhaps no modality captures the human imagination more than being able to simply talk to a machine and have the machine answer one's every command and wish. The full integration of voice as an input medium could alleviate many of the known limitations of existing human-machine interfaces. The use of voice could also help in reducing the incidence of various repetitive stress injuries that are associated with typing and pointing.

Speech recognition research has made significant progress in the last fifteen years. The gains have come from the convergence of several technologies: higher-accuracy continuous speech recognition based on better speech modelling techniques, better recognition search strategies that reduce the time needed for high-accuracy recognition, and increased power of audio-capable, off-the-shelf workstations. As a result of these advances, real-time, speakerindependent, continuous speech recognition, with vocabularies of thousands of words, is now possible in software on regular workstations.

In terms of recognition performance, word error
rates have dropped by more than an order of magnitude in the last decade, and they are expected to continue to fall with further research. Technically, there have been advances in two areas. First, a paradigm shift from rule-based methods to model-based methods has taken place. In particular, probabilistic hidden Markov models (HMM) have proven to be an excellent method of modelling phonemes in various contexts. This model-based paradigm, with its ability to estimate model parameters automatically from training data, has shown its power and versatility by applying the technology to various languages, using the same software. Second, the use of statistical grammars, which estimate the probability of two- and three-word sequences, have been instrumental in improving recognition accuracy, especially for largevocabulary tasks. These simple statistical grammars have, so far, proven to be superior to traditional rule-based grammars for speech recognition purposes.

Word error rates for speaker-independent, continuous speech recognition vary a great deal, depending on the difficulty of the task. They vary from less than 0.3% for connected digits, to 3% for a 2500-word travel information task, to 10\% for read articles from the Wall Street Journal, to 30% for transcription of broadcast news programs, to 40% for conversational speech over the telephone. Although word error rates in the laboratory can be quite small for some tasks, the error rates can increase by a factor of four or more when the same systems are used in the field. This increase has various causes: heavy accents, ambient noise, different microphones, hesitations and restarts, and straying from the system's vocabulary.

Speech recognition has begun to enter the mainstream of everyday life in several countries, chiefly through telephone-based applications. These include call completion services, voiceactivated dialing (especially useful for cellular phones), personal assistant services (to manage one's telephone at work), and call router applications (where you say the person's full name instead of dialing). Other operational applications include obtaining stock and mutual fund quotes by voice, simple banking services, bill payment by telephone, air traffic control training, and dictation.

Simply making speech recognition available with
machines, however, does not necessarily make it immediately useful; it will have to be interfaced properly with the other modalities so that it appears seamless to the user. Applications must be designed to take into account the fact that recognition errors will occur, either by allowing the user to correct errors or by designing additional error correction mechanisms, such as the proper inclusion of human-machine dialogue capabilities. Other speech integration issues include habitability (the ability of a user to stay within the system's vocabulary most of the time), portability (the ease with which a speech recognition system can be ported to a new domain), and user experience (different users, depending on their experience, may require different types of interaction).

Looking into the future of the Internet, speech recognition could have many applications, such as command and control, information access and retrieval, training and education, email and memo dictation, and voicemail transcription. The current state of the art in speech recognition can support these applications at various levels of performance, some quite well (e.g., command and control) and others not well at all (e.g., voicemail transcription). Functions that perform information access, such as making an airline reservation, may require the use of a certain level of language understanding technology. The state of the art in that field only allows for the simplest of such applications at this time (see below).

Language Understanding

In many of the applications of speech recognition, simply recognizing the sequence of words uttered by a speaker is sufficient. One example is simple command and control, where the mapping between the sequence of words uttered and the corresponding meaning is straightforward. Another example is automatic dictation, where the desired result is the sequence of words itself and not their meaning. However, for applications involving database query, or for more sophisticated command and control, the mapping between the sequence of words and their meaning can be very complicated indeed. Enter the field of language understanding, whose purpose is to take a sequence of naturally-occurring words and produce a representation of their meaning.

Much of the research in language understanding has taken place in the context of database query, where the user requests the answer to a query by typing or uttering the query. In most language understanding systems to date, a set of syntactic and/or semantic rules are applied to the query to obtain its meaning, which is then used to retrieve the answer. If the query refers to information obtained in previous queries, then another set of rules that deal with discourse are used to disambiguate the meaning. Pragmatic information about the specific application are often encoded in the rules as well. Even for a simple application like retrieval of air travel information, hundreds of linguistic rules are hand coded by computational linguists. Many of these rules have to be rewritten for each new application.

The rule-based paradigm that has dominated computational linguistics so far has experienced the same pitfalls and problems as the earlier rulebased paradigm in speech recognition. For example, it is practically impossible for one or more linguists to keep track of all the rules in a system and understand how they interact. Also, it is not easy to benefit from linguists working on the same problem at other sites.

In the last few years, a new model-based language understanding technology has seen certain embryonic beginnings. The idea here is to treat the language understanding problem as a mathematical one, where the goal is to develop models that take a sequence of words as input and produce a semantic representation as output, without the need for many hand-written rules. The parameters of the models are estimated automatically from a training corpus that has been annotated as to the meaning of each query in the corpus.

The performance of model-based approaches has not yet surpassed those of hand-tuned, rulebased methods. This is not surprising, given the relatively small amount of work that has gone into the new approaches. At this juncture, it is not clear what method or combination of methods will lead to significant advances in the state of the art. What is clear, however, is that the language understanding problem is a difficult one and that much work remains to make significant advances in the field.

Language understanding research systems fall essentially in two classes: database query systems, characterized by full and deep understanding of a query in a narrow domain, and information extraction systems, characterized by partial and shallow understanding in very wide domains. The state of the art in database query systems is represented by the ATIS (Airline Travel Information Service) DARPA task, where the user asks information about flights and schedules using speech. The utterance error rate, measured as the percentage of queries where the system gave the wrong answer, is 6% for spoken input and 4% for the corresponding text input.

The state of the art in information extraction, based on the DARPA Message Understanding Conference (MUC) evaluations, spans a wide range. For the "named entity" application, where the system has to find all named organizations, locations, persons, dates and times, and monetary amounts and percentages, the error rate is 5%. For the "scenario template" application, where the system has to extract complex relationships in well-defined domains (such as joint ventures) in an open source (such as the Wall Street Journal), the error rate for finding the correct elements of the templates is around 45\%.

To be sure, there have been a number of successful commercial applications of natural language processing. Spelling checkers, as well as grammar and style checking programs, are now commonplace. A number of products exist which perform text indexing and retrieval; this is clearly a growing application area, especially with the spread of the Internet and the increased desire to organize and access large amounts of data, much of which is available as text. A few database query products that utilize natural language as input are being marketed for targeted applications.

Conclusion

In conclusion, the Internet will serve as an exciting platform for the incorporation of various speech technologies in interesting and challenging ways. Some of the speech technologies can be applied today in fruitful ways, while others will benefit from additional research.

Speech Recognition on the Internet

John Makhoul
BBN Technologies, Cambridge, MA

26 September 1997
Rhodes, Greece

The Internet:

It is not just for Email anymore

- The Internet is (or soon will be) the
- mail
- telephone
- cable
- computer
- It is a global, multi-modal, telecommunications medium and information resource

The Internet Challenge:
How will users interface to the Internet?

- Telephone push buttons
- if you want the hardware department, push (or say) 6...
- TV controls
- communicating one bit at a time
- Programming your VCR or home theater
- Computer WIMP (windows, icons, menus, pointing) interface
- figuring out how to use new versions of software

Desired Features of Interfaces

- Ubiquitous
- office, home, airplane, beach
- sitting, walking, bathing
- Tailored to the physical device, context, user capability
- Multi-modal
- Seamless across applications and modalities

Voice is one glaring missing I/O modality

© BBN Technologies

Speech Technologies

BBN

- Speech Coding
- Speech Synthesis
- Speaker Verification
- Speech Recognition
- Language Understanding

Interface Issues

- Develop metaphor for human-machine interaction by voice
- Interface standards
- Additions to SAPI
- Efforts to standardize the transmission of speech recognition parameters (e.g., cepstral coefficients)
- Batch mode vs. streaming analysis/recognition
- Handshaking standards
- Speech Coding Standards
- Effect on speech recognition accuracy
- Seamless interface with other modalities
- Natural integration into applications
- Dialog capabilities
- Maintaining the state of user-machine interaction

Speech Recognition Applications

- Possible Applications
- Call completion
- Command and control
- Internet transaction-based recognition
- Vertical applications: travel, weather, stocks
- Information extraction/retrieval
- Training/Education
- Email/memo dictation
- Voicemail transcription
- Current Applications
- Wordspotting of few words for telephone services
- Speaker-independent continuous speech recognition for vertical applications (call routers, stock quotes, radiology)
- Large-vocabulary dictation

Corpus	Type	Vocabulary Size	Word Error Rate
Connected Digits	Read	10	$<0.3 \%$
Pirline Travel (ATS)	Spontaneous	2500	2%
Wall Street Journal	Read	64,000	$\mathbf{7 \%}$
Broadcast News	Mixed	64,000	30%
Switchboard	Conversational Telephone	10,000	35%
Call Home	Conversational Telephone	10,000	50%

- Results are mainly for native speakers of American English
- Human performance is an order of magnitude better

Robust Speech Recognition

- Error rates increase by factors of 2 to 5 when tested under conditions different from training:
- channel, microphone, noise
- speakers with regional accents
- non-native speakers
- Adaptation techniques reduce error rates to within a factor of $\mathbf{2}$ after a few minutes.
- Reducing error rate of basic system reduces error rate for other conditions.

Speech Input Taxonomy

BBV

© BBN Technologies

SPeech on the INternet (SPIN)

Advantages of SPIN

- Affordable
- low-end PC client
- soundcard and mike
- Netscape 3.0 (optional)
- Portable
- plug-in fits on small client machines (e.g., PDAs)
- low-bandwidth allows wireless communication
- Powerful
- scales to large-vocabulary applications
- Convenient
- interface is just the Netscape browser (w/ plug-in)
- Versatile
- Could be user for other applications, such as speaker verification

Language Understanding

- People want to
- get things done, simply and quickly
- feel in control of the environment
- not feel intimidated nor inconvenienced
- say what they want and have it done
- Language understanding is the Achilles' heel of human/ machine communication

The Language Understanding Landscape

Current Technology

- Systems based on syntactic, semantic, discourse, and pargmatic rules, hand crafted for each new application
- Require many months of work by linguistic experts
- Technology may be adequate for limited applications
- Database query
- Information extraction

State of the Art in Understanding

- Airline Travel Information task (ATIS)
- Spoken Language: 8\% error, based on answer
- Typed Language: 6\% error
- Message Understanding (MUC - 6)
- Named Entity (95\% accuracy: F-measure)
- Named organizations, locations, and persons; dates and times; monetary amounts and percentages
- Template Element (80% accuracy)
- Organizations (all versions of name, their nationality or headquarters location, key descriptions)
- Persons (all versions of name, title)
- Scenario Template (55\% accuracy)
- Complex, domain-specific relationships, e.g., terrorist events or joint ventures

Problems with the State of the Art

- Skilled computational linguists required to write rules at all levels
- Large sets of rules are difficult to maintain
- Coverage and accuracy are difficult to optimize outside of micro-domains
- New rule sets are required for each new domain or language
- Difficult to share rule sets between different sites

A Model-Based Approach

- All processing is performed by searching statistical models
- Model parameters are automatically estimated from annotated training examples
- Only local lexical semantic rules and semantic annotation guidelines
- Annotation can be performed by nonlinguists
- System is robust to ill-formed inputs

Model-Based Understanding

Present and Future

- Two recent successes demonstrate that statistical models can solve challenging understanding problems
- Fully trained spoken language understanding in the ATIS domain, including modeling of discourse
- Fully trained multilingual Named-Entity recognition
- Performance has not surpassed rule-based methods yet
- Model-based methods offer the potential of
- a paradigm shift in language understanding research
- a breakthrough in performance comparable to that achieved
in speech recognition
- an approach that is language independent

Key Areas

- Keep on improving recognition accuracy
- Improve speech interfaces
- Accelerate work on understanding

4. The use of evaluation in the Aupelf-Uref and related Language Engineering Actions.

Professor Joseph Mariani
Coordinator of the Francophone Language Engineering Network (Francil)
LIMSI-CNRS
Orsay (France) - "mariani@limsi.fr"

The FRANCIL Network

In June 1994 the AUPELF-UREF (Association of French Speaking Universities) decided to launch a research network on Language Engineering, called Francil (Francophone Network on Language Engineering). The coordinator is J. Mariani, and he is assisted by F. Niel as deputy coordinator. A network committee has been installed which consists of 5 members
(C. Delcourt (Belgium), C. Boitet (France), Y. Normandin (Canada/Quibec), E. Wehrli (Switzerland), Y. Hlal (Morocco)). The network presently has 69 research laboratories, both public and private, in 7 countries (Belgium, Canada, Egypt, France, Morocco, Switzerland, Tunisia). The goal of the Francil network is to ensure a good relationship between laboratories working in the field of Language Engineering, for the processing of the French Spoken and Written language. The total Budget is about 4 MEcu over 4 years (1 MEcu for the network, including Cooperative Research Actions (ARP), 1 MEcu for a training program and 2 MEcu to the Strategic Research Actions (ARC)).

Actions within the program

The Francil network has activities that are usual to an international research network : a Network information infrastructure, with a Web site, an electronic bulletin and a regular newsletter. It has produced a researchers and laboratories directory. The network also produces scientific and technical information and data: a book series has been started, which already has one volume, and two more are coming. Also a French language resources, tools and systems inventory is presently being designed. Training activities are also covered, with a 2 -year 3rd cycle diploma (Ecole Doctorale Francophone en Gınie Linguistique). It is then possible to obtain PhD grants, within this framework.

Francil organizes a biennal Conference, called JST. The first JST'97 conference took place in Avignon (France), on April 13-16, 1997. The network also participates in the coordination of the Actions de Recherche Concerties (ARC, Strategic Research Actions), and manages the

Actions de Recherche Partagie (ARP, Cooperative Research Action) of Aupelf-Uref.

Actions de Recherche Concerties (ARC, Strategic Research Actions)

The ARCs, funded by the Fonds Francophone de la Recherche, cover 2 domains in the field of language engineering (written language processing and spoken language processing), and 3 or 4 topics for each domain. For each topic, there exist 3 tasks:
i) Organize the test campaign (involving an organizer and a coordinating committee),
ii) Provide data (raw or annotated),
iii) Participate in the test campaigns.

A Call for offers was sent on July 1994. The deadline was November 1, 1994 and 89 proposals were submitted. The selection took place in March, 1995. 50 proposals were selected, including 35 laboratories from 4 countries (Belgium, Canada, France, Switzerland). An evaluation campaign is conducted every two years. The first one took place in 1995-1997. The next one is to take place in 1997-1999, and should be opened to industrial and to non-Francophone laboratories working on French language processing. Workshops were organized for each action, as satellite events of the JST'97.

The topics are the following:
In the domain of "Written language resources and systems evaluation" (ILEC), 4 actions have been initialized:

- A1 Natural Language access to textual information
- A2 (Bi/Multi)lingual corpus alignment
- A3 Automated terminological database design
- A4 Message understanding

In the domain of "Spoken language resources and systems evaluation" (ILOR), 3 actions have been initialized:

- B1 Voice dictation
- B2 Vocal dialog
- B3 Text-to-Speech synthesis

The organizers are, for Written Language Processing, A. Coret (INIST (F), A1), J. Vironis (LPL (F), A2), C. Jouis and W. Mustafa (Univ. of Lille (F), A3) and P. Sabatier (LIM (F), A4). For Spoken Language Processing, J.M. Dolmazon (ICP (F)), B2 \& B3) and A. Marchal (LPL (F), B3). An international Advisory Committee comprising 6 members for ILEC and the same for ILOR participates in the selection of the proposals and in the evaluation of the program every year.

Spoken Language Processing (ILOR):

ARC B1: Voice dictation

The task consists of newspaper text dictation. The "Le Monde" newspaper has been chosen. 5 laboratories (CRIM, INRS (Canada), CRIN, Laforia, LIMSI (France)) participated in this action and 10 large vocabulary continuous speech recognition systems have been tested, gathered in 3 different test conditions (i) 20 KW , ii) 64 KW and iii) unlimited size vocabulary). The BREF speech corpus, designed at Limsi, has been distributed for training the systems, either as the BREF-80 subset (1 CD-ROM (80 speakers pronouncing 5000 sentences)), or as the full BREF corpus (12 CD-ROM (120 speakers pronouncing all material (100 hours)). A written language corpus, also provided by Limsi, has been distributed for training the language models. It consists of two years of the "Le Monde" newspaper (1987-1988, 40 MWords). A common lexicon (BDLex) was provided by IRIT, including the phoneme transcriptions, together with the list of the most frequent 20 Kwords and 64 KWords in the language corpus, and 4 Language Models (LM) (Bigram / Trigram, 20 KWords / 64 KWords). The test conditions were constrained for categories i) and ii) : the systems should use the 20 KWords (resp. 64 KWords) list and should be trained using the BREF corpus. The use of the provided Language Models was not mandatory, but the Le Monde data used for training should be anterior to May 1996 (Dry Run) or November 1996 (Test). The test data consists of two sets: T, a 600 sentences corpus, with open Out-Of-Vocabulary (OOV) word rate, and T', a 300 sentences corpus, with controlled OOV rate (less than 3\%), as a subset of T. The "Dry Run" data (2 hours) has been provided by 20 Speakers (12 male, 8 female). The prompts were given (Le Monde, May 1996). The test data (2 hours) has been provided by 20 speakers (10 male, 10 female). The prompts were also given (Le Monde, November 1996). The deadline for providing results was March 3, 1997 at 23h59. The results were computed using the NIST/Sclite V3.0
software. In the adjudication phase, 474 claims were made by 3 participants, and 94% of those claims were accepted. The description of the systems was provided by each participant. Results were reported as general word recognition rates, and the influence of various parameters was studied (speaker, speaking rate, male vs female etc), for each system and overall.

Within B1, a specific sub-action is conducted on the testing of Language Models. Several measures and protocols have been considered:
i) computation of the perplexity, for missing word prediction: the systems bet on what may be a missing word,
ii) testing various Language Models on the same recognized word lattice,
iii) evaluating the Language Models as add-ons to an existing acoustic speech recognition system.

The content of the second B1 test campaign is presently being discussed. There is a possible extension to dialectal / regional variants of the French language, and to more challenging tasks.

ARC B2: Vocal dialog

This action aims at the evaluation of spoken language understanding and dialog systems. 5 laboratories (INRS (Canada), Limsi, IRIT, CLIPS, IRISA (France)) participate in the action. A first step was to choose the task domain (providing tourist information). A second step was to produce dialog corpora. Two corpora have been designed : a Human - Human "Pilot" corpus, consisting in the recordings of dialogs at a Tourist Office in Grenoble (15 hours), conducted by CLIPS and a Human -Machine corpus, consisting in the recordings of actual dialogs, based on scenarios, with a voice dialog system, which provides tourist information in a train station. This is conducted by Limsi, in cooperation with the SNCF company.

A lot of discussions took place on the evaluation metrics, as it appears difficult to define evaluation measures, or even protocols in the area of dialog systems evaluation. As far as spoken language understanding is concerned, some still tentative measures have been proposed within the DARPA ATIS (Air Traffic Information System) action. A false response, for example, is considered as a twice more severe error than no answer. Dialog evaluation is even more difficult, as dialogs are dynamic processes,
and their content will be different for each system, at each step of the dialogs. Several evaluation metrics may be considered (evaluation of the components (recognition, parsing, dialog handling, generation, synthesis, etc), evaluation of the dialog duration, of the number of turns, of the comfort and satisfaction of users, etc). The DQR (Documents, Question, Response) approach, proposed in the ARCs A4 action, has also been considered within B2. The principle is to ask the system specific questions at a given state of the dialog, in order to assess its ability to address specific aspects of dialog processing (intentions, inferences, dialog strategy, handling of implicit information etc).

ARC B3 Text-To-Speech synthesis

The task here is to evaluate Text-to-Speech systems in French. 9 participants (Limsi, LIA, ENS Telecom, ICP (France), LAIP (Lausanne), LATL (Geneva) (Switzerland), K.U. Leuven, TCTS Mons (Belgium), INRS (Canada)) are present in this action, and 7 systems have been evaluated in the first campaign.
4 kinds of tests are considered here:
i) Grapheme-to-phoneme conversion,
ii) Prosody,
iii) Encoding (voice quality) and
iv) evaluation of the complete systems.

In the first campaign, only grapheme-tophoneme translation modules were evaluated. The first step was to agree on a common phonetic alphabet (one closed to SAMPA, designed in the SAM EC project was chosen). A Dry Run took place in April 1997, on the "Le mot et l'idie" text (a basic French text, including 99 sentences). The NIST scoring, initially designed for evaluating speech recognition systems, was used here for aligning the reference corpus and each transcription coming from the different systems, and for detecting and counting the transcription errors. The error rates ranged between 0% and 5.3%. An adjudication phase took place and the test campaign was conducted in September 1997, on the "Le Monde" Newspaper (2,000 sentences, totalling 26,000 words). The phoneme error rates range from 0.5% to 7%, while the sentence error rate ranges from 10% to 80%.

For the future, it is foreseen to consider several tasks (newspaper reading, inverse directory,

Human-machine dialogs, Email reading...). Subjective evaluation tests will be conducted at LPL (Aix-en-Provence). A possible extension to dialectal/regional variants of the French language is also considered here.

Written language processing (ILEC):

ARC A1: Text Retrieval

8 laboratories (New Mexico State Univ. (USA), DIRO (Canada), ENS Telecom, LIA, Xerox Res. Center, TGID (France), EPF Zurich, Neuchatel University (Switzerland)) participated in this action. The text domain consists of 3 different corpora:
i) a corpus of the "Le Monde" newspaper including 15,000 documents and 11 topics (extended questions) for training the systems and 15,000 documents and 15 topics for testing;
ii) a corpus of INIST Scientific Abstracts (extracted from the Francis and Pascal databases, and covering all areas), including 150,000 documents and 15 topics for training the systems, as well as 150,000 documents and 15 topics for testing;
iii) a corpus of books on the ethnology of Melanesia (about 50 books). Unfortunately, the agreement requested from the editors was not obtained quickly enough to consider this data in the first campaign). The training data is contained on one CDROM (including the correct answers), and the testing data is also contained on one CDROM. The evaluation metrics consist of the Precision-Recall measures (\% of documents retrieved which are correct vs \% of correct documents which have been retrieved). The dry run and the test were completed for the first campaign, which is considered as an exploratory phase. Future evaluations may be conducted over the Web.

ARC A2: Text alignment

The task here is the alignment between the same texts written in French and English.
6 laboratories participate in the action (CITI (Canada), CRIN, LIA, IDL (France), ISSCO (Switzerland), UCREL Lancaster (UK)). In the first campaign, it was decided to consider sentences as the units to be aligned (other candidates could be paragraphs, syntagms or words). The corpus which is used comprises extracts of the Official Journal of the European Union (JOC) (provided through the EC Multext project, 10 MWords in
total / 1.2 Mwords per language) and CCITT technical texts (provided by the EC Crater project, 3 Mwords in total / 1 Mwords per language), provided by LPL, the BAF ("Bitextes Anglais-Frannais", 400 KWords for each language) provided by CITI, and fiction texts ("Le Disert des Tartares" and "Le Petit Prince"), provided by CRIN. The results are given as Precision-Recall measure (\% of alignments produced which are correct vs \% of source sentences correctly aligned, considering words or characters). The tests are being conducted in November/December 1997. Word alignment will be considered in the next phase.

ARC A3: Terminology extraction from texts

This action has 9 participants (TALANA, IRIN, EDF, CLIPS, LALIC, TGID, LIMSI (France), UQAM (Canada)). The corpus consists of the SPIRALE Journal (Research in Education), including 19 issues of about 200 pages each, which have been manually indexed by experts and for which there exists a thesaurus and a list of key-words. Other corpora will be considered in the second campaign (from the Renault car company, the INRA (Agriculture) or even the ethnology on Melanesia one designed for A1). The different systems which are tested have different functionalities and provide different outputs ((ordered) terms, grammatical network, semantic graphs...). The evaluation is presently qualitative, and is provided by experts on the basis of the analysis of the usability of the information provided by the systems.

ARC A4: Message Understanding

The result of the Call for Proposals on this topic was not sufficiently large to launch a complete action. Given the importance of the field, it was decided however to install a Working Group including 3 laboratories (2LC, LIPN and LIM (France)) for two years. This Working Group has produced a final report in November 1997, where they compile a list of systems, cluster them in different categories, and propose to use the DQR (Documents-Questions-Responses) protocol, suggested within the EC Fracas project, to assess the systems which are able to handle this protocol.

Actions de Recherche Partagie (ARP, Cooperative Research Action)

In parallel with the ARC actions, a set of Cooperative research actions (ARP) are conducted within the Francil network. The mechanism here involves the exchange of
researchers (mostly southern countries students going to northern countries laboratories).

4 topics have been selected:
i) Linguistic Resources and evaluation, tools and formalisms;
ii) Aid to the authors (OCR, spelling checker...);
iii)French language computer-assisted training (spoken/written) and
iv)Automated extraction of multilingual (French-) terminological resources.

A Call for Proposals was sent in May 1995, the selection was conducted in July 1995, and 14 proposals were selected, including 45 laboratories from 17 countries (Algeria, Bulgaria, Belgium, Canada, Congo, Egypt, France, Hungary, Japan, Lebanon, Mali, Madagascar, Morocco, Nigeria, Switzerland, Tunisia, UK)). The projects have been selected and are yearly assessed by the Francil Network Committee. Some of the projects in topics i) and iv) allow for the indirect participation of "southern" countries in the ARC actions, adding a cooperative element in the comparative ARC program. Those which address topics related to corpus and evaluation are the following :

- Study of French dialectal variants in Morocco (ENSIAS (Morocco), LIMSI (France))
- Alignment between French and 8 African languages - LPL (France), GTIL (Mali), INRAP (Congo)
- Tools for French/Arab terminological database construction (CRTT (F), IRSIT (Tun), ENSSIBCERSI (F))
- Corpus production and processing - Inalf (France), ENS Algier (Algeria), University of Fès (Morocco), Universities of Montreal, Laval, Sherbrooke (Canada), Un. Neuchatel (Switzerland)
- Synchronous production and management of French/Arab Dictionaries - IDL (France), University of Tunis (Tunisia), University of Fez (Morocco), Cedej (Egypt)
- Terminological databases creation and exploitation - CRIN, ERSS, INALF, ERSI, STTGLP (France), IRSIT (Tunisia), Termisti (Belgium)

Related actions

The AUPELF-CNRS SILFIDE project

The Silfide ("Interactive Server for the Identity, Distribution and Study of the French Language") aims at installing a French Language resources and tools distributed server. A Call for Proposals was issued in July 1995, with a 70 KEcu budget, as a joint Aupelf-Uref / CNRS effort. The action now involves the partnership of 5 laboratories (CRIN, INALF, LPL, CLIPS and LIMSI), and a first prototype of a single site Language Resources server has been designed.

The CNRS CCIIL "GRACE" Action

This action, sponsored by CNRS within the "Cognition, Intelligent Communication and Language Engineering" action (CCIIL), aims at morphosyntactic taggers evaluation. Two corpora have been made available for training in two domains: "Le Monde" newspaper (19891990) and the INALF Frantext corpora (French literature of the 19th and 20th centuries). Testing is conducted on embedded text (10,000 Words embedded in a larger 500 KWords corpus), for both types of domains.

Following a Call for participation, 20 labs responded and 18 finally participated in the action. It was decided to use the EAGLES / EC-LE-Multext project tag set as a reference tag set, and that each participant would keep their tag set and provide a translation table between their own tag set and the reference tag set. The results are presented as a Precision - Decision matrix (\% of tags assigned correctly vs \% of tags assigned). Those results are given for 3 different conditions: results compared
i) with the proprietary tag set,
ii) with the reference tag set, and
iii) within a class of systems.

A dry run was completed and the results were discussed at a satellite workshop organized during the JST'97. The tests are to be completed by January 1998.

The CNRS IL (Language Engineering) Action

This action, sponsored by CNRS, aims at making Language Resources which may have been produced but are not yet distributed available to the scientific community. After a Call for Proposals, the selection took place in June 1997.

9 projects were selected, among which 2 are indirect results from previously mentioned actions.

One is on a corpus for grapheme-to-phoneme translation in French. It is based on the fact that a large corpus has been transcribed by several (8) grapheme-to-phoneme transcription systems within the ARC B3 action. Hand-made corrections of those transcriptions will allow to make this corpus available as a reference corpus for development and evaluation. A phonemic lexicon, possibly containing French regional variants, will also be made available.

The second is a tagged corpus in French, obtained through the Grace action. Here also, it is based on the fact that a large corpus (1 Mwords) has been tagged by a large number (18) of taggers. Hand-made corrections of those tags will result in making available a large tagged reference corpus for the development and evaluation of morphosyntactic tagging in French, and related systems development.

Conclusions

As a conclusion, we shall stress the importance of the evaluation paradigm in Language Engineering (both for Spoken and Written Language processing). It induces the necessity of defining precise evaluation metrics and the availability of well documented language resources for training and testing, produced in due time and in conformity with the specifications. It allows for a better understanding of the advantages and drawbacks of the different systems, approaches and methods, which are discussed during the workshops in the light of the test results which concern the same data, each participant trying to do their best on that task. We think that different languages should be addressed. In the US, the evaluation paradigm has been used within the DARPA and NIST actions and programs, and reported since 1987, mostly on American English. It has been recently extended to other languages (Multilingual TREC...). A proposal for preparing a possible Human Language Technologies Evaluation infrastructure within the EC 5th Framework program will be investigated within the EC FP4-Telematics ELSE project. It will be also important to consider the coordination of national (such as the French ones) or language specific (such as the Aupelf-Uref ones) actions with the EC effort in that area.

1．National Technical University of Athens

Short presentation of the main activities that concern Natural Language Processing

Dr．G．Manis and A．Manousopoulou Digital Systems and Computers Laboratory Electrical and Computer Engineering Dept．， National Technical University of Athens Zografou Campus，15773，Athens，Hellas
Professors：G．Papakonstantinou \＆P．Tsanakas

Abstract

NLP research in the Digital Systems and Computers Laboratory focuses mainly on parallel natural language processing and story generation．Research activities are complemented by the development of respective tools and applications．

The main research activities are： －Parallel natural language parsing with Eurotra grammars．The parsers are generated with a metacompiler tool and run on the parallel programming platforms Orchid and PVM （Project＂Dialogos＂／EPET－II）． －Interactive story generation systems for the assistance of script writers，based on rule databases and inference engines（Project ＂DeFacto＂／ESPRIT－LTR）． －Parallel natural language processing with logic programming techniques．The main focus of this research line is on attribute grammars and constraint logic programming（Project＂Logos＂／ STRIDE）．

II．Kعípeva Me入ćv tou AvӨpןmívou

1．EӨvıкó Мعтоóßıo Полutexveío

рıотク́тнv пои aчороúv $\sigma т \eta v ~ Е п \varepsilon \xi \varepsilon \rho ү а \sigma i ́ a ~ Ф u-~$

$\Delta \rho$ ．Г．Mavńя каı к．А．Mavouбопоú入ou

Kaөпүптє́я：Г．Папакшvбтаvтívou каı П．Tбаváкая

H ouáסa Г $\lambda \omega \sigma \sigma$ ки́я Tعхvo入oүías tou Epүaбтך－ рíou $\Psi п ч ı а к \omega ́ v ~ \Sigma u \sigma t \eta \mu a ́ t \omega v ~ к а ı ~ Ү п о \lambda о ү ı \sigma т \omega ́ v ~$

 кои́ ε ít $\varepsilon \mu \varepsilon$ тך $\mu о \rho \varphi \eta ́ \varepsilon \rho ү а \lambda \varepsilon i ́ \omega v, ~ \varepsilon i ́ t \varepsilon ~ \mu \varepsilon ~ т \eta ~ \mu о \rho-~$甲ท́ єфариоүш́v хрŋ́бтŋ．
 брабтпрıо́тптєৎ عívai：

 （عрєuvŋтıкó દ́рүo＂DE FACTO＂）
 тп хри́бп 入оүıкои́ проүрациатıбнои́（архıка́ хрŋцатоботои́ $\mu \varepsilon v o$ aпо́ то єрєиvŋтько́ про́үрациа ＂＾ОГОऽ＂）

Méба бта $\beta \rho a \chi u \pi \rho o ́ \theta \varepsilon \sigma \mu a ~ \sigma \chi \varepsilon ́ \delta ı a ~ т о u ~ E \rho ү a \sigma т \eta-~$ píou عívaı кaı о $\sigma \chi \varepsilon \delta ı a \sigma \mu o ́ ̧ ~ к a ı ~ \eta ~ к а т а \sigma к \varepsilon \cup \eta ́ ~$ ипо入оүıотıкढ́v $\lambda \varepsilon \xi ı к \omega ́ v ~ ү ı \alpha ~ т \eta v ~ E \lambda \lambda \eta v ı к \eta ́ ~ ү \lambda \omega ́ \sigma-~$ ба，та опоі́a Өа пєрıв́хouv ouvtaктıки́ каı $\sigma \eta \mu a-$
 o ρ रáv $\omega \sigma \eta$ ．Ta $\lambda \varepsilon \xi ı \kappa a ́ ~ a u t a ́ ~ \mu \pi o \rho o u ́ v ~ v a ~ \varepsilon i ́ v a ı ~ ү \varepsilon-~$

 кท́s каı đף $\mu a \sigma ı о \lambda о ү ı к \eta ́ ৎ ~ a v a ́ \lambda u \sigma \eta ̧ ~ к \varepsilon ı \mu \varepsilon ́ v \omega v . ~$

 $\lambda \varepsilon i ́ t a l ~ к a ı ~ a п o ́ ~ t o u s ~ \mu \varepsilon т а ா т u \chi ı a к о и ́ s ~ \varphi o ı т \eta т \varepsilon ́ ৎ: ~ A . ~$ Mavouбoпoúخou，Г．Mavŋ́，A．Єávo кaı Σ ．$\Sigma \omega-$ tи́рхо．Парака́тш，Өa avamtuxӨoúv ava入utıкótع－ ра оו кирıо́тєрєৎ aпо́ тıৎ проаva甲єрӨعíбєৎ ठра－ отпріо́тŋтєৎ．

ouvtaktiкóৎ ava入utท́ৎ tףৎ $\varepsilon \lambda \lambda \eta v i к \eta ́ \varsigma ~ ү \lambda \omega ́ \sigma \sigma a \varsigma ~$ ［1］［2］．O бuvtaктıкóৎ autóৎ ava入utńৎ ßaбíotŋкє

 ото плаíбıо тои врєuvŋтıкои́ проүра́ μ атоя Eurotra．Н үраниатıки́ пои хрŋбıопоıŋ́Өŋкє апотвлеі́таı апо́ 150 пері́пои үрациатькои́я ка－ vóveя пои перıүрáழouv ह́va по入ú $\mu \varepsilon ү व ́ \lambda о ~ u п о-~$

 عıкоvíそとтаı η ठıабıкабía пои ако入оиӨŋ́Өŋкє үıа va катабкєиaбтєí о бuvtaктıкós ava入utŋ́s．

Архıка́，η үрациатıкท́ тПৎ $\varepsilon \lambda \lambda \eta v ı к \eta ́ \varsigma ~ \sigma \varepsilon ~ \sigma u \mu \beta о \lambda ı-~$ оно́ Eurotra ठóӨŋкє wৎ عíбобоৎ ото Eu－PAGE ［3］，ह́va عрүа入єío поu avaпtúxӨŋкє ото врүа－
 Eurotra autó $\mu a t a \operatorname{\sigma \varepsilon }$ ки́ठıка $\mathrm{C}++$ ．О кш́ठıкая autóৎ пробарио́бтпкє па́vш бє ठи́о проүраниа－ тוбтькє́ платфо́ $\mu \varepsilon \varsigma: ~ т \eta v ~ п \lambda а т \varphi о ́ \rho \mu а ~ P V M ~ к а ı ~$ тпv платфо́р α а Orchid［4］［5］．H платфо́ μ а PVM

 μ O Orchid ε ívaı $\mu i ́ a ~ п \lambda а т ф о ́ \rho \mu а ~ п о и ~ a v a п т u ́ \chi Ө \eta к є ~$

 ктıкóৎ ava入utท́s үıa tŋv $\varepsilon \lambda \lambda \eta v i \kappa \eta ́ ~ ү \lambda \omega ́ \sigma \sigma a . ~$

O бuvtaктıкós autós ava入utńя Xpךбıнопоıєí то
 катабквиабтвí апо́ то IEへ．О тро́поя врүабías

 $\varepsilon \varphi a \rho \mu о ү \eta ́ \varsigma, ~ a v a ́ \lambda о ү а ~ \mu \varepsilon ~ т \eta ~ \delta u v a \mu ı к о ́ т \eta т а ~ т \eta \varsigma ~$ парá $\lambda \lambda \eta \lambda \eta \varsigma \mu \eta \times a v \eta ́ s$.
 бхєठóv үрациıкŋ́．
－о ка́ठıкая парク́хӨŋ autó $\mu a t a . ~ М \varepsilon \lambda \lambda о v t ı к \varepsilon ́ ৎ ~$

 ŋ́ үıа үраниатıкє́¢ пои пєрıүра́甲оuv ү入ஸ́боєऽ
á $\lambda \lambda \omega v \chi \omega \rho \omega ́ v, \eta$ катабкєuท́ tou $\sigma u v t a \kappa t ı к о \cup ́$ ava入utท́ $\mu \pi о \rho \varepsilon i ́ ~ \varepsilon п i ́ \sigma \eta ̧ ~ v a ~ ү i ́ v \varepsilon ı ~ \mu \eta x a v i \sigma t ı к a ́ . ~$
－o ouvtaktıкós ava入utńs عíval $\mu \varepsilon \tau а \varphi \varepsilon ́ \rho \sigma ı \mu о \varsigma . ~$ H платфо́ μ а PVM $\lambda \varepsilon ו т о и \rho ү \varepsilon i ́ ~ п a ́ v \omega ~ a п o ́ ~ т ı ৎ ~$ пєрเббо́тєрєৎ пара́л入ך入єৎ $\mu \eta \chi a v \varepsilon ́ \varsigma, ~ \varepsilon v \omega ́ ~ \eta ~$ платфо́ μ а Orchid ε ќхєı ŋ́ठך avaптuхӨعí $\sigma \varepsilon$

－$\varepsilon \lambda a ́ x ı \sigma t \varepsilon \varsigma ~ к a ı ~ \sigma \tau a Ө \varepsilon \rho \varepsilon ́ \varsigma ~ a ா a ı t \eta ́ \sigma \varepsilon ı \varsigma ~ \mu v \eta ́ \mu \eta \varsigma . ~ H ~$ xคńбף autouát ωv үıa тŋv u入опоínoŋ тоu бuvtaктıкои́ ava入utท́ aпaıtعí μ ккро́ каı otaӨعро́ хळ́ро $\mu v \eta ́ \mu \eta я$ ．AvtíӨєта，отоия оuvтактıкои́я ava入uté¢ поu ह́xouv wৎ ßáoŋ то 入оүıко́ пооүрациатьбно́，$\eta \mu v \eta ́ \mu \eta$ пои апаıтвítаı вívaı avá入оүך тпৎ по入иплоко́тптая тпৎ про́та⿱㇒㠯я．
 проүраниатьоно́ паратпрвítaı то фaıvó $\mu \varepsilon$ vo оו иполоүıотıка́ по入и́плокєৎ прота́бєıৎ бuXVá va $\mu \eta$ v т $\varepsilon \rho \mu a t i ́ \zeta o u v, ~ к а ́ т ı ~ п о и ~ \delta \varepsilon ~ \sigma u \mu \beta a i ́ v \varepsilon ı ~$
 ota autó $\mu a t a$.

лоүıко́ проүраниатібно́

 п入aíoıo тоu $\varepsilon \rho \varepsilon u v \eta t ı к о и ́ ~ \varepsilon ́ p ү o u ~ " S T R I D E ~ / ~$ ＾ОГОミ＂каı $\sigma u v \varepsilon \chi i ́ \sigma т \eta к \varepsilon$ каı $\mu \varepsilon \tau \alpha ́ ~ т \eta v ~ п \varepsilon \rho a ́ t \omega \sigma \eta ~$ тои проүра́ $\mu \mu$ тоя．А甲орои́бє бтпv пврıүра甲й

 үраниатıбно́［6］［7］．
 μ ккро́ uпобúvo入o тпS $\varepsilon \lambda \lambda \eta v i к \eta ́ s ~ ү \lambda \omega ́ \sigma \sigma a s, ~ т о ~$

 80 пєрі́пои каvóvєৎ（үрациатıкои́ৎ каı 入єкть－

 тои проүра́ μ атоя，о́пшऽ отоv бuvтактько́ ava－入utท́ пои пєрıүра́фŋкє отףv проךүои́ $\mu \varepsilon \vee \eta ~ п а \rho a ́-~$ үрачо）．

 үрациатıбнои́ $\mu \varepsilon \quad \pi \varepsilon \rho ı \rho ı \sigma \mu о$＇́（Constraint Logic Programming）［8］．Oı тєХVוкє́ৎ autદ́ৎ عாı－

tou عрعuvŋтıkoú غ́pүou＂ESPRIT－LTR／DE FACTO＂（Design Framework for Interactive Story Systems），пои апоß入є́пєı бтп סпцıоирүía عvós
 фعís va үpá甲ouv oعvápıa［9］［10］．To $\sigma \varepsilon v a ́ p ı o ~$ пои тє入ıка́ Өa парáүєтаı aпó тоv uпо入оүıотท́ Өа

 $\mu \eta \chi a v \eta ́ ~ \sigma u \mu \pi \varepsilon \rho a \sigma \mu a t o \lambda о ү i ́ a s ~ к а ı ~ \varepsilon ́ v a ~ \sigma u ́ \sigma t \eta \mu a ~$ параүшүท́s кєıцв́vou．H $\mu \eta \times a v \eta ́ ~ \sigma u \mu п \varepsilon \rho а \sigma \mu а т о-~$入oүías déxetaı $\omega \varsigma$ عíбoठo kavóvȩ amó $\mu i ́ a ~ \beta a ́ \sigma \eta ~$

 үוкó（interactive）$\pi \varepsilon \rho ı \beta a ́ \lambda \lambda о v ~ \tau \rho ı \sigma \delta ı a ́ \sigma \tau a t \omega v$
 проки́птвı о корио́я тоu бعvaрíou，о опоíos вí－ vaı кшठькопоı $\mu \varepsilon ́ v o \varsigma ~ \sigma \varepsilon ~ \mu i ́ a ~ ү \lambda \omega ́ \sigma \sigma а ~ п о и ~ х \rho \eta \sigma \eta-~$
 $\mu \pi \varepsilon \rho a \sigma \mu a t о \lambda о ү$ ías каı тои бибти́ $\mu а т о \varsigma ~ п а р а ү \omega-~$
 $\sigma \varepsilon$ фибוки́ $ү \lambda \omega \sigma \sigma a$.

Ava甲opéя

［1］A．Manousopoulou，G．Manis，P．Tsanakas and G．Papakonstantinou，
＂Automatic Generation of Parallel Natural Language Parsers，＂ International Conference on Tools with Artificial Intelligence 97，USA，November 1997
［2］A．Mavoưoпoú入ou，Г．Mavŋ́ৎ，П．Tбavákas， Г．Пamak ω votavtívou
 г $\lambda \omega \sigma \sigma a \varsigma, "$
60 Пave入入ŋ́vıo इuvéठрıо П入ŋрочорıки́я， AӨŋ́va，$\Delta \varepsilon к \varepsilon ́ \mu \beta \rho ı о \varsigma ~ 1997$
［3］А．Г．Mavouoonoú入ou，
＂$\Sigma u v t a к т ı к \grave{~ A v a ́ \lambda u \sigma \eta ~ Ф u \sigma ı к \eta ́ ৎ ~ Г ~} \lambda \omega ́ \sigma \sigma a \varsigma ~ \mu \varepsilon$ то

इu μ ßолıбнó Eurotra，＂
ЕМП，Δ เп $\lambda \omega \mu a t ı к \eta ́ ~ E \rho ү a \sigma i ́ a, ~ 1995 ~$
［4］C．Voliotis，G．Manis，Ch．Lekatsas，P．Tsanakas and G．Papakonstantinou，
＂ORCHID：A Portable Platform for Parallel Programming，＂
Journal of Systems Architecture，no．37，
pp．459－478， 1997
［5］Г．Mavŋ́s，
＂Мєтафє́ $о \iota \mu \eta$ Платчо́ μ а Пара́入入п入оu Проүрациатьонои́，＂
Δ เбакторıки́ Δ เатрıßク́，
EӨvıкó Мєтбóßıo По入uteхvعío， 1997
［6］C．Voliotis，A．Thanos，N．M．Sgouros and G．Papakonstantinou，
＂DAFFODIL：A Framework for Integrating AND／OR Parallelism，＂
5th Hellenic Conference on Informatics， Greece， 1995
［7］C．Voliotis，N．Sgouros and G．Papakonstantinou， ＂Attribute Grammar Based Modeling of Concurrent Logic Programming，＂
International Journal of Artificial Intelligence Tools，vol．4，no 3，pp．383－411， 1996
［8］G．Papakonstantinou，C．Voliotis and N．Sgouros， ＂Dependency－directed Binding of Variables for Constrained Logic Programming，＂
DEXA 94 Conference， 1994
［9］N．Sgouros，P．Tsanakas，G．Papakonstantinou， ＂A Framework for Plot Control in Interactive Story Environments，＂
13th Conference on Artificial Intelligence （AAAI－96）， 1996
［10］N．Sgouros，G．Papakonstantinou，P．Tsanakas， ＂Dynamic Dramatization of Multimedia Story Presentations，＂

International Conference on Intelligent User Interfaces， 1997

2．Athens University of Economics and Business

Language Engineering and Intelligent Agents

Professor John Kontos
Laboratory of Artificial Intelligence
Department of Informatics
Athens University of Economics \＆Business，
76 Patission St．， 10434 Athens，Hellas

Abstract

The present paper presents the design and implementation of a motion command understanding system with a learning interface for the communication with its user．The system described here accepts Greek and English as the natural language of communication of the user with the system and the execution of motion commands expressed in natural language．The system is applied to the communication between a user and an artificial agent，which exists in a virtual environment and accepts commands and knowledge about the objects and the actions possible in this environment．The commands are phrased natural language and they express three kinds of actions．The first kind of action is change of position e．g．the movement of an object，the second kind is change of state e．g the opening or closing of some objects and the third kind is the change of a relation between objects e．g．to placement of an object on top or inside another object．Our system exhibits some novel features i．e．the creation of its lexicon is accomplished automatically using a machine readable dictionary，learning of the correct interpretation of commands with more than one meaning is accomplished using machine learning by supervision techniques based on visual feedback．One source of the multiplicity of meaning of a command is the multiplicity of the senses of a word as recorded in a machine readable dictionary．Another source is the possibility of an object to be placed on a surface with different orientations．The main contribution of the present paper is based on the ability of the system implemented to learn from its user to understand and execute correctly motion commands that go beyond its initial capabilities． This learning takes place in cases when the system faces the problem of unknown words，of unknown senses of words or underspecified positions or orientations of objects．The system was implemented with Turbo Prolog using its simple facilities for computer graphics which are adequate for demonstrating the feasibility of the methods developed．

Глшббıки́ Tعхvолоүі́а каı Еичивí́ Пра́кторея

KaӨnүๆтńs I ω ávvŋя Kóvtos
Epya⿱亠巾⿱㇒́刂́o Texvntís Nonuooúvns
Тии́ца П入прочорıки́я
Пainoí ωv 76， 10434 AӨク́va

Eıбayตүท́

 кท́ $\sigma \eta \mu a \sigma ı 0 \lambda o ү i ́ a ~ \delta \rho a ́ \sigma \varepsilon \omega v ~[I . ~ K o ́ v t o c ̧ ~ 1980, ~ 1982, ~$ 1983a，1983ß］દ́хєı архі́бєı ото Eрүабти́рıо Tع－

 то 1995．इто плаí́то тои проүра́ $\mu \mu$ тоя аutoú

 оти́цата autá amote入oúv umoбuбtńцата пои
 $\mu \varepsilon ́ v o ~ \sigma u ́ \sigma t \eta \mu a ~ \mu \varepsilon ~ п \rho о п ү \mu \varepsilon ́ v \varepsilon \varsigma ~ ı к а v o ́ t \eta т \varepsilon ৎ ~ \delta ı а \lambda o ́-~$
 ріүра甲oúv $\sigma u v o \pi t ı к a ́ ~ u m o \sigma u \sigma t n ́ \mu a t a ~ п о и ~ \varepsilon ́ X o u v ~$ илопоıŋӨвí ото врүабти́pıo［I．Kóvtoৎ，1992， 1996，I．Kóvтос каı I．Ma入aүарঠŋ́，1997a，1997ß， М．Пغ́үкои，1996，Δ ．Трıкка入íठпৎ，1997］．

Үпоби́бтпиа $\AA \varepsilon \xi$ ккои́

 $\mu а т о \varsigma ~ \varepsilon п \varepsilon \xi \varepsilon \rho ү а \sigma i ́ a \varsigma ~ \varepsilon \rho \mu \eta v \varepsilon \cup \mu a ́ t \omega v ~ \mu \varepsilon ~ и п о \lambda о ү ا-~$ бти́ ón $\omega \varsigma$ autá $\varepsilon \mu \varphi$ avíZovtal $\sigma \varepsilon$ ع $\rho \mu \eta v \varepsilon \cup t i к a ́ ~ \lambda \varepsilon$－ $\xi ו \kappa \alpha ́ . ~ T o ~ \sigma u ́ \sigma t \eta \mu a ~ \varepsilon ́ \chi \varepsilon ı ~ \cup \lambda о п о ı \eta \theta \varepsilon i ́ ~ \mu \varepsilon ~ ү \lambda \omega ́ \sigma \sigma a ~$
 ór $\omega \varsigma$ عívaı η autó $\mu a t \eta$ avíxveuon кuк $\lambda ı \kappa \omega ́ v$ opı－ б $\mu \omega ́ v$ каı о аuто́ μ атоя $\mu \varepsilon т а \sigma х \eta \mu а т і \sigma \mu o ́ ¢ ~ \varepsilon \rho \mu \eta-~$
 нопоוoúvtaı $\lambda \varepsilon ́ \xi \varepsilon ı \varsigma ~ п о u ~ \varepsilon к \varphi \rho a ́ ł o u v ~ \beta a \sigma ı к \varepsilon ́ ৎ ~ \varepsilon ́ v-~$ voıяৎ．O $\mu \eta x a v i \sigma \mu o ́ \varsigma ~ a v a ́ \lambda u \sigma \eta \varsigma ~ t \omega v ~ \varepsilon \rho \mu \eta v \varepsilon u \mu a ́-~$
 бía $\sigma \chi \varepsilon ́ \sigma \varepsilon \omega v$ ava甲opá̧ $\mu \varepsilon \tau а \xi u ́ ~ t \omega v ~ \varepsilon \rho \mu \eta v \varepsilon u \mu a ́-~$

 үıа тıৎ бокıцв́¢ тои ипобибтйиатоя．

甲орє́ৎ $\sigma \varepsilon$ ठıа甲орєтıка́ $\varepsilon \rho \mu \eta v \varepsilon$ ú $\mu a t a$ поu عívaı $\mu \varepsilon ́ \lambda \eta ~ к а ́ п о ı a s ~ a \lambda u \sigma i ́ ठ а я ~ \varepsilon ү ү \rho a 甲 \omega ́ v . ~$
－H autó $\mu a t \eta ~ \delta \eta \mu ı o u p \gamma i ́ a ~ к а т а \sigma к \varepsilon u a \sigma \mu \varepsilon ́ v \omega v ~$ $\varepsilon \rho \mu \eta v \varepsilon u \mu a ́ t \omega v \mu \varepsilon ́ \sigma \omega ~ \tau \omega v ~ a \lambda u \sigma i ́ \delta \omega v$ бта опоía
 $\rho \eta \mu a ́ t \omega v$ кaı á $\lambda \lambda \omega v \lambda \varepsilon ́ \xi \varepsilon \omega v \mu \varepsilon$ отóxо тŋv

тףৎ кикגıко́тףтаৎ

Гıa тоv бкопо́ autóv ठŋцıоирүŋ́Өŋкє $\mu i ́ a ~ \sigma \varepsilon ı \rho a ́ ~$ aпо́ проүра́ $\mu \mu a \tau a ~ ү ı a ~ т \eta v ~ a v \varepsilon u ́ \rho \varepsilon \sigma \eta ~ к а ı ~ т \eta v ~ \varepsilon п \varepsilon-~$

 пои пєрเદ́Xouv tŋv a入uoíठa үıa кáӨє $\lambda \eta ́ \mu \mu a ~ к a ı ~$

 б $\mu \varepsilon ́ v a ~ \mu o ́ v o ~ \mu \varepsilon ~ \beta a \sigma ı к a ́ ~ \rho \eta ́ \mu a t a ~ к а ı ~ \sigma \varepsilon ~ \delta v ́ о ~ \mu о \rho-~$
 Prolog кaı a甲єтє́pou $\sigma \varepsilon \mu о \rho \varphi \eta ́ ~ \sigma u \mu \beta о \lambda о \sigma \varepsilon ı \rho a ́ ৎ ~$ тпऽ Prolog．Ta проүрá $\mu \mu a t a ~ a u t a ́ ~ a v i \chi v \varepsilon u ́ o u v ~$
 ко入úvetaı η катápүŋoŋ́ тоuৎ поu عívai amapaí－

 рท́цата．

Ta $\rho \eta ́ \mu a t a ~ п о и ~ a п о \mu о v \omega ́ v o v t a ı ~ \sigma \varepsilon ~ к a ́ \theta \varepsilon ~ \beta \eta ́ \mu a ~$ $\sigma u v \delta u a ́ \zeta o v t a ı ~ \sigma \varepsilon \mu i ́ a ~ \lambda i ́ \sigma t a . ~ K a ́ \theta \varepsilon ~ \varphi о \rho a ́ ~ п о u ~ a п о-~$ μ ovévetaı anó દ́va $\varepsilon \rho \mu \eta ́ v \varepsilon u \mu a ~ \varepsilon ́ v a ~ v \varepsilon ́ o ~ \rho \eta ́ \mu a ~ т о ~$
 $\mu \varepsilon ́ v \omega \varsigma ~ \sigma \tau \eta ~ \mu \varepsilon ́ \chi \rho ı ~ т о ́ т \varepsilon ~ к а т а \sigma к \varepsilon \cup a \sigma \mu \varepsilon ́ v \eta ~ \lambda i ́ \sigma t a . ~$ Eáv $\sigma u \mu \beta \varepsilon$ í autó，то́тє то про́үрациа бıако́ттєь
 бía $\varepsilon ү ү \rho a \varphi \eta ́, ~ т \eta v ~ к а т а ү \rho a ́ \varphi \varepsilon ı ~ \sigma т о ~ а \rho \chi \varepsilon i ́ o ~ \varepsilon \xi o ́ \delta о u ~$ $\mu a \zeta i ́ ~ \mu \varepsilon$ то үєүоvós ótı $\varepsilon \cup \rho \varepsilon ́ \theta \eta ~ к и к \lambda ı к \eta ́ ~ a \lambda u \sigma i ́ ס a . ~$

 छıко́，опо́тє Өа катаүра甲єí бто архعío є乡о́סои η

 $\varepsilon \rho \mu \eta ́ v \varepsilon \cup \mu a$ ．To véo $\varepsilon \rho \mu \eta ́ v \varepsilon u \mu a$ عívaı $\varepsilon к \varphi \rho a \sigma \mu \varepsilon ́ v o$ $\mu \varepsilon$ ßабько́ рŋ́ μ а каı $\mu \varepsilon$ та оицплпры́цата пои

 т ωv т $\omega v \rho \eta \mu a ́ t \omega v \mu \varepsilon$ uпо入оүıбти́ amaiteí tov $\mu \varepsilon$－ pıoцó autóv каӨஸ́s каı тך $\sigma u \sigma \chi \varepsilon ́ т ı \sigma \eta ~ \mu \varepsilon ~ т \eta v ~$ ovto入оүía тои μ ккоо́коб μ ои бтоv отоío סроuv оו пра́кторєя．

To бúбтпиа $\varepsilon п \varepsilon \xi \varepsilon \rho ү a \sigma i ́ a s ~ \varepsilon \rho \mu \eta v \varepsilon u \mu a ́ t \omega v ~ п о и ~$

 проӥпоӨє́тєє тఇv＂катаvóクоŋ＂（understanding） тоu voń $\mu a \tau о \varsigma ~ \tau \omega v ~ \rho \eta \mu a ́ t \omega v ~ \delta \rho a ́ \sigma \eta \varsigma ~ \mu \varepsilon ~ т а ~ о п о i ́ a ~$
 $\eta ~ \chi \rho \eta ́ \sigma \eta ~ т \eta \varsigma ~ \lambda \varepsilon ́ \xi \eta \varsigma ~ " к а т а v o ́ \eta \sigma \eta " ~ \sigma т \eta ~ ү \lambda \omega \sigma \sigma ı к \eta ́ ~$

 $\mu a t ı о ́ т \eta t a ~ a v a \varphi \varepsilon \rho о ́ \mu a \sigma t \varepsilon ~ \sigma т о v ~ \mu \eta x a v i \sigma \mu o ́ ~ \mu \varepsilon ~$

 $\varepsilon к т \varepsilon \lambda \varepsilon ́ \sigma \varepsilon ı ~ т \eta v ~ a ா \varepsilon เ к o ́ v i \sigma \eta ~ п о u ~ о ~ \chi \rho \eta ́ \sigma т \eta ৎ ~ a v a \mu \varepsilon ́-~$
 т $́ т о เ \omega v ~ a u t o ́ \mu a t \omega v ~ \mu \eta x a v i \sigma \mu \omega ́ v ~ a u \xi a ́ v \varepsilon ı ~ т \eta v ~ \varepsilon u \varepsilon-~$ $\lambda ı \xi i ́ a ~ \sigma u \sigma \tau \eta \mu \alpha ́ t \omega v ~ \varepsilon \mu \psi u ́ x \omega \sigma \eta \varsigma ~ \mu \varepsilon ~ а п \omega ́ т \varepsilon \rho о ~ \sigma к о-~$ по́ тףv autó $\mu a t \eta ~ \delta \eta \mu ı о и р ү i ́ a ~ \delta u v a \mu ı к \omega ́ v ~ a п \varepsilon ו к о-~$

 vєтаı апо́ поо́үраниа，то опоíо $\mu \varepsilon т а \varphi \rho a ́ \zeta \varepsilon ı ~ \varepsilon ́ v a ~$

 ко́ $\lambda \varepsilon \xi$ ıко́ $\sigma \varepsilon$ обךүі́єৎ єкчраб $\mu \varepsilon ́ v \varepsilon \varsigma ~ \mu \varepsilon ~ \beta a \sigma ı к a ́ ~$ рท́цата．

пра́кторєя

Ү $л о п о ı ŋ ́ Ө \eta к \varepsilon ~ \sigma u ́ \sigma т \eta \mu а ~ a п \varepsilon ı к о ́ v ı \sigma \eta \varsigma ~ \varepsilon v т о \lambda \omega ́ v ~ к i ́ v \eta-~$
 пєí $\sigma \tau \eta v \varepsilon к \sigma \varphi a \lambda \mu a ́ t \omega \sigma \eta$ єпıкívठuv ωv ท́ ठaпavŋ－

 vtaı uпó $\ddagger \eta$ та $\sigma \cup \sigma \tau a t ı к а ́ ~ \sigma т о ı \chi \varepsilon i ́ a ~ т \eta ৎ ~ \sigma u \mu п \varepsilon \rho ı-~$
 та поu бuvavtoúv ótav סроuv $\sigma \varepsilon$ عוסıкои́ৎ μ ккоо́－

 $\varepsilon เ \delta \iota к о и ́ ৎ ~ \mu ı к р о ́ к о \sigma \mu о и ৎ ~ o ́ п о и ~ п р а ́ к т о р є ৎ ~ \varepsilon к т \varepsilon-~$

入oúv kıvŋ́бદıৎ пои пробठıо

 μa каı η $\mu \varepsilon т а т \rho о п \eta ́ ~ т о и я ~ \sigma \varepsilon ~ a п \varepsilon ı к о v ı \zeta o ́ \mu \varepsilon v \varepsilon ৎ ~$

 ठра́бךৎ，та avtıкєí $\mu \varepsilon v a$ каı тоия пра́кторєৎ пои aпєıкоvíZovtaı．Σ тך бuvéxદıa $\mu \pi о \rho \varepsilon i ́ ~ v a ~ \varepsilon ı \sigma a ү a ́-~$

 $\mu \varepsilon ́ v o ~ к \varepsilon i ́ \mu \varepsilon v o ~ a п o ́ ~ т \eta v ~ \varepsilon п \varepsilon \xi \varepsilon \rho ү a \sigma i ́ a ~ т о и ~ о п о i ́ o u ~$
 т ωv amapaít $\eta t \omega v$ кıvŋ́ $\varepsilon \varepsilon \omega v$ үıa тŋv $\varepsilon к п \lambda \eta ́ \rho \omega \sigma \eta$

Oı β aбıкદ́ৎ $\sigma u v ı \sigma t \omega ́ \sigma \varepsilon \varsigma ~ t o u ~ \sigma u \sigma t \eta ́ \mu a t o \varsigma ~ \varepsilon i ́ v a ı ~ т о ~$
 uпобúбтпиа параүшүńs кıvŋ́бє ωv ，то uпобú－

 $\varepsilon \xi \varepsilon ́ \lambda ı \xi \eta \varsigma ~ т \eta \varsigma ~ \delta \rho a ́ \sigma \eta \varsigma . ~ T o ~ u п о \sigma u ́ \sigma т \eta \mu a ~ \varepsilon п \varepsilon \xi \varepsilon \rho ү а-~$
 $\lambda \varepsilon ı т о и \rho ү i ́ \varepsilon \varsigma . ~ H ~ п \rho \omega ́ т \eta ~ а \varphi о \rho a ́ ~ т \eta ~ \delta ı а х \varepsilon i ́ p ı \sigma \eta ~ т \eta \varsigma ~$

 птเкє́ৎ $\varepsilon \rho \omega \tau \eta ́ \sigma \varepsilon ı \varsigma ~ ү ı a ~ т \eta v ~ \varepsilon ı \sigma a ү \omega ү \eta ́ ~ v \varepsilon ́ \omega v ~ \sigma т o ı \chi \varepsilon i ́-~$

Архітєктоviки́ тои бибти́цатоя

 દ́Xદı $\omega \varsigma$ бтóxo va $\varepsilon \lambda \varepsilon ́ \gamma \xi \varepsilon ı ~ к a ı ~ v a ~ \varepsilon ா a \lambda \eta Ө \varepsilon u ́ \sigma \varepsilon ı ~ т \eta ~$ סuvatótŋта тоu прáктора va $\varepsilon к т \varepsilon \lambda \varepsilon ́ \sigma \varepsilon ı ~ \mu ı a ~ о б \eta-~$

 avtıкєıцд́v $\omega \mathrm{v}$ ，бтıৎ ıкаvóтŋтєৎ тои пра́ктора，ка－ $\theta \omega ́ \varsigma ~ к a ı ~ \sigma \tau \eta ~ \sigma \eta \mu a \sigma i ́ a ~ \tau \omega v ~ \rho \eta \mu a ́ t \omega v ~ к a ı ~ \tau \omega v ~ a ́ ~ \lambda \lambda \omega v$

 оठŋүía aпó $\mu i ́ a ~ \beta a ́ \sigma \eta ~ ү v \omega ́ \sigma \eta я ~ \tau \omega v ~ a v t ı к \varepsilon ı \mu \varepsilon ́ v \omega v ~$ кaı $\varepsilon \xi \varepsilon \tau a ́ \zeta \varepsilon ı ~ к а т a ́ ~ п o ́ \sigma o ~ o l ~ ı \delta ı o ́ t \eta \tau \varepsilon ৎ ~ \tau \omega V ~ a v t ı к \varepsilon ા-~$ $\mu \varepsilon ́ v \omega v$ aut ω v ıкаvoпoıoúv tou̧ перıорıб μ ои́ৎ каı п入クроúv тıৎ бuvӨŋ́кєৎ пои aпaıtoúvtaı aпó та

 aпó тıৎ μ о́vı $\mu \varepsilon \varsigma$ каı $\sigma \tau a \theta \varepsilon \rho \varepsilon ́ \varsigma ~ เ \delta ı o ́ t \eta \tau \varepsilon \varsigma ~ \tau \omega v ~ a v t ı-~$
 т ωv опоí $\omega \mathrm{o}$ oı тıцє́я $\varepsilon \xi а \rho т \omega ́ v \tau a ı ~ a п o ́ ~ т \eta v ~ \varepsilon к т \varepsilon ́ \lambda \varepsilon-~$

 $\theta \varepsilon i ́ ~ \mu \varepsilon ~ т \rho \varepsilon ı \varsigma ~ \delta о \mu \varepsilon ́ я . ~ H ~ п о \omega ́ т \eta ~ \delta о \mu \eta ́ ~ а 甲 о \rho a ́ ~ т ı ৎ ~$
 $\rho \circ \varsigma, ~ т о ~ \chi \rho \omega ́ \mu а, ~ о \iota ~ \delta ı a \sigma т а ́ \sigma \varepsilon ı ৎ ~(и ́ \psi о \varsigma, ~ п \lambda а ́ т о \varsigma, ~ \mu \eta ́-~$

 ঠоцท́ a甲орá та $\mu \varepsilon ́ \rho \eta ~ п о и ~ \sigma u v Ө \varepsilon ́ т о u v ~ \varepsilon ́ v a ~ a v t ı к \varepsilon ́ ́-~$
 $\mu \varepsilon ́ \rho \eta ~ \eta ́ ~ \tau ו ৎ ~ \varepsilon ா ו \varphi a ́ v \varepsilon ı \varepsilon ৎ ~ к а т a ү \rho a ́ \varphi o v t a ı ~ \sigma \tau \eta ~ \beta a ́ \sigma \eta ~$

O $\mu \eta \chi a v i \sigma \mu o ́ \varsigma ~ \mu a ́ Ө \eta \sigma \eta \varsigma ~ \beta a \sigma i ́ \sigma т \eta к \varepsilon ~ \sigma т \eta v ~ \cup \lambda о п о o ́ \eta-~$

 a甲орá тŋv кívŋণף поu прє́пєı va кávєı о прáкто－ pas үıa va $\varepsilon к т \varepsilon \lambda \varepsilon ́ \sigma \varepsilon ı ~ \mu i ́ a ~ o \delta \eta ү i ́ a . ~ A \varphi o u ́ ~ a v a そ \eta т \eta-~$ Өои́v каı ıкаvопоıŋӨoúv ó ó oı oı пعрıорıбноí，то
 avaそŋтá otך ßáon үvம́ons тоv тро́то $\mu \varepsilon$ тоv опоі́о праүнатопоьєíтаı η биүкєкрıцв́vך обпүía үıа то avtıкєí $\mu \varepsilon$ vo пои хعıрí̧єтаı о пра́кторая． Eáv $\delta \varepsilon v$ عvtomioteí $\sigma \chi \varepsilon \tau ı к \eta ́ ~ ү v \omega ́ \sigma \eta, ~ t o ́ t \varepsilon ~ a v a \zeta \eta-~$
 $\mu \pi о \rho \varepsilon i ́ ~ v a ~ ү i ́ v o u v ~ ү ı a ~ v a ~ \varepsilon к т \varepsilon \lambda \varepsilon \sigma т \varepsilon i ́ ~ \eta ~ \sigma u ү к \varepsilon к \rho ו-~$

пои $\varepsilon \mu \varphi a v i ́ \zeta \varepsilon \tau a ı ~ \sigma т \eta v ~ o Ө o ́ v \eta . ~ E a ́ v ~ \eta ~ a \pi a ́ v т \eta o \eta ~ \varepsilon i ́-~$ vaı ката甲атıкŋ́ то́тє η кívŋoŋ пробтíӨєтаı $\sigma т \eta$
 форía үıа то биүкєкрıцв́vo ри́ца каı та биүкв－

 үра甲ŋ́ ó $\lambda \omega v \tau \omega v$ ठuvatóv каvóv ωv ．इuүкєкрццє́va， عvб $\omega \mu a t \omega ́ v o v t a ı ~ \sigma t \eta ~ \beta a ́ \sigma \eta ~ ү v \omega ́ \sigma \eta ৎ ~ o ́ \lambda o ı ~ o ı ~ \delta u v a t o i ́ ~$

 т $́ \varsigma ~ к а ı ~ \sigma т \eta v ~ a п а ү o ́ p \varepsilon u \sigma \eta ~ \mu \varepsilon \rho ı к \omega ́ v ~ a ́ \lambda \lambda \omega v ~ \mu \varepsilon ~ a \lambda \lambda \eta-~$ $\lambda \varepsilon п i ́ \delta \rho a \sigma \eta ~ \mu \varepsilon$ тоv хрŋ́бтŋ，о опоíos $\sigma u \mu \beta о u \lambda \varepsilon u ́ \varepsilon ı ~$

 Kaт＇apхŋ́v avaкалеítaı aпó тท $\mu v \eta ́ \mu \eta ~ т о u ~ п \rho a ́ к т о-~$
 каı t ωv avtıкєı $\mu \varepsilon ́ v \omega v$ поu $Ө \varepsilon \omega \rho \varepsilon i ́ t a ı ~ o \rho Ө \eta ́ ~ к а ı ~ ү i ́ v \varepsilon-~$ taı véos бхદঠıaбرós otךv oӨóvŋ үıa va aпоката－
 xદıа катаүра́чєтаı то $\lambda a ́ Ө о ৎ ~ \sigma т \eta ~ \beta a ́ \sigma \eta ~ ү v \omega ́ \sigma \eta \varsigma ~ т о и ~$ ouotń $\mu a t o s . ~ H ~ k a t a ү \rho a \varphi \eta ́ ~ a u t n ́ ~ a v t ı o t o ı x \varepsilon i ́ ~ \sigma \varepsilon ~$ aпєvعрүопоínoף ŋ́ aкúpんoŋ tou kavóva поu oठ́ń－

 бદıৎ $\sigma \varepsilon$ ह́va $\varepsilon \rho \omega ́ t \eta \mu a ~ \eta ́ ~ k a v o ́ v a ~ \beta \rho i ́ \sigma к о v т a ı ~ a \rho \chi ı к a ́ ~$
 $\omega \varsigma ~ \varepsilon v \varepsilon \rho ү \varepsilon ́ \varsigma ~ o u ́ t \varepsilon ~ \omega \varsigma ~ a v \varepsilon v \varepsilon \rho ү \varepsilon ́ \varsigma . ~ K a t a ́ ~ т \eta ~ \delta ı a ́ p к \varepsilon ı a ~$

 $\mu i ́ a ~ a п o ́ ~ т ı ৎ ~ \varepsilon v a \lambda \lambda a к т ı к \varepsilon ́ ৎ ~ a m a v t \eta ́ \sigma \varepsilon ı ৎ, ~ \varepsilon v \varepsilon \rho ү \eta ́ ~ \eta ́ ~ a v \varepsilon-~$ v $\varepsilon \rho ү \eta ́ . ~ H ~ \delta ı a \delta ı k a \sigma i ́ a ~ a u t \eta ́ ~ \sigma u v \varepsilon \chi i ́ \zeta \varepsilon \tau a ı ~ \mu \varepsilon ́ \chi \rho ı ~ v a ~ \varepsilon \xi \varepsilon-~$ тaбтоúv ó $\lambda \varepsilon ৎ$ оı amavtท́бєıৎ поu apxıка́ β рíбкоvтаv отŋv $\varepsilon v \delta ı a ́ \mu \varepsilon \sigma \eta ~ к а т a ́ \sigma т а \sigma \eta, ~ о п о ́ т \varepsilon ~ к а ı ~ о \lambda о к \lambda \eta \rho \omega ́ v \varepsilon-~$
 пра́ктораৎ хрךбиопоьєí μ óvo عквívєৎ тıৎ aпavтท́－
 ov tov xpńotŋ үıa tŋv opӨótŋтá тоuc．O тро́тоя

Bıß入ıoүpa甲ía

Kontos，J．（1980）．
Syntax－Directed Processing of Texts with Action Semantics．
Cybernetica，23， 2 pp．157－175．
Kontos，J．（1982）．
Syntax－Directed Plan Recognition with a Microcomputer．
Microprocessing and Microprogramming．9， pp．227－279．

Kontos，J．（1983a）．
Syntax－Directed Fact Retrieval from Texts with a Micro－Computer．
Proc．MELECON＇83，Athens．
Kontos，J．（1983ß）．
Text Retrieval for User Interfacing with the Micro－Computer．
Proc．MECO＇83，Athens．
Kontos，J．（1992）．
ARISTA：Knowledge Engineering with Scientific Texts．
Information and Software Technology，
Vol．34，No 9，pp 611－616．
Kóvtos，I．（1996）．
Tعגvךтŋ́ Noпиобúvך каı＾оүонпхаvıкŋ́．
Екठóбєıৎ E．Mпદ́vou．
Kóvtoc，I．\＆Ma入аүарбŋ́，I．\＆Пह́үкоч，M．（1997a）．
 Үполоүıбти́．
$30 \Delta \iota \in Ө \varepsilon ́ \varsigma ~ Г \lambda \omega \sigma \sigma о \lambda о ү ı к o ́ ~ \Sigma u v \varepsilon ́ \delta \rho ı o ~ ү ı a ~ т \eta v ~$

Kóvtos，I．\＆Ma入aүaןסŋ́，I．（1997ß）
 проৎ Báбєıৎ $\Delta \varepsilon \delta о \mu \varepsilon ́ v \omega v$ каı Kєıцદ́v ωv＂． $30 \Delta \iota \varepsilon \theta v \varepsilon ́ \varsigma ~ Г \lambda \omega \sigma \sigma о \lambda о ү ı к o ́ ~ \Sigma u v \varepsilon ́ \delta \rho ı o ~ ү ı a ~ т \eta v$ Е入入ŋvıки́ Г入ஸ́ $\sigma \sigma a$ AӨウ́va．

Пє́үкои，М．（1996）．

Аıплшнатıки́ Мєтаптчхıаки́ Eрүабía тои Тип́иатоя Плпрочорıки́я．Оıкоvонıко́

Трıкка入íठŋя，Δ ．（1997）．
 $\mu a ́ Ө \eta \sigma \eta \varsigma, ~ ү ı a ~ т \eta v ~ \varepsilon п \varepsilon \xi \varepsilon \rho ү a \sigma i ́ a ~ \varepsilon v т о \lambda \omega ́ v ~ к i ́ v \eta \sigma \eta \varsigma ~$

тии́натоя Плпрочорıки́я．Оıкоvоиıко́

III．Пapou⿱íaon vé ωv ßıß入íwv

Н ФІ＾ОГОФІА THГ Г＾ЛГ

тоu $\Sigma u \lambda \beta a i ́ v ~ \Omega \rho o u ́ ~$

Епíк．KaӨŋүท́трıa Mapía Tбoútбoupa lóvio Пaveாıбти́нıo

Sylvain Auroux，La philosophie du langage，avec la collaboration de Jacques Deschamps et Djamel Kouloughli，Collection Premier Cycle， Presses Universitaires de France，1996， $442 \sigma \sigma$.
 lotopías t $\omega v \pi \varepsilon \rho i ́ ~ Г \lambda \omega ́ \sigma \sigma \eta ̧ ~ I \delta \varepsilon \omega ́ v ~(Г \varepsilon ́ v \varepsilon \sigma \eta ~ \tau \omega v ~$

 тıко́ по入ıтıбнó סıєupúvetaı xápŋ $\sigma \varepsilon$ ठúo autóvo－ $\mu a ~ п а р а р т и ́ \mu a t a: ~ \varepsilon ́ v a ~ п \lambda n ́ \rho \varepsilon я ~ " X \rho o v o \lambda o ́ ү ı o ~ т о u ~$
 тıৎ 甲ориа入ıбтькєя ү $\lambda \omega \sigma \sigma \varepsilon \varsigma ~ к а ı ~ \sigma u \sigma т \eta ́ \mu a т а . ~ H ~$
 Өદ́цатоৎ $\sigma \varepsilon 10$ кє甲á入aıa обпүعí $\sigma \varepsilon$ каıvото́ $\mu \varepsilon \varsigma$
 каı тŋv ठєоvто入оүі́a т ωv ү $\lambda \omega \sigma \sigma ı \kappa \omega ́ v ~ \varepsilon п เ \sigma т \eta \mu \omega ́ v: ~$

1．H av $\theta \rho \omega \dot{m} \mathrm{v} \eta \mathrm{Y} \lambda \omega \sigma \sigma a$

$\Delta ı a \chi \rho o v ı к \eta ́ ~ к а ı ~ \sigma u v \theta \varepsilon т ı к \eta ́ ~ п р о \sigma \varepsilon ́ ү ү ı \sigma \eta ~ \theta \varepsilon \mu \varepsilon \lambda ı \omega-~$

入óyo．

2．H үpa甲ń

 $\varepsilon \xi o u o i ́ a s ~ t \eta \varsigma ~ a v \theta \rho \omega ́ m i v \eta \varrho ~ k o ı v \omega v i ́ a s . ~ H ~ ү \rho a \varphi \eta ́ ~$

 ка́ каı $\varepsilon \xi \omega-ү \lambda \omega \sigma \sigma ı к a ́ ~ \sigma u \mu \varphi \rho a \zeta o ́ \mu \varepsilon v a$ ．＇Eठ $\omega \sigma \varepsilon$
 a入入á кaı катє́бтпбє $\delta u v a t \eta ́ ~ т \eta v ~ \sigma u \mu ß ૦ \lambda ı к \eta ́ ~ \sigma к \varepsilon ́-~$

 Өрஸ́пои．O о́роя＂grammatologie＂（пои عıбףүף́－

Өŋкє о Gelb то 1952 кaı каӨıє́ $\rho \omega \sigma \varepsilon$ о Nepıvtá үıa

 Xvá тŋv 甲i入o入oүía．

3．H фúбף тоu ү $\lambda \omega \sigma \sigma$ окоú $\sigma \eta \mu \varepsilon i ́ o u$

H ıбторía tou toıaठıкoú μ ovtદ́入ou（ńXoৎ－ıס́́a－ пра́үна）aпó tov Aрıбтотв́入ŋ каı tov Auyouбtívo $\omega \varsigma ~ t \eta ~ ү \rho a \mu \mu a t ı к \eta ́ ~ t o u ~ P o r t-R o y a l, ~ t o v ~ C o n d i l l a c, ~$ tov Hobbes，tov Leibniz кaı $\mu \varepsilon ́ \chi \rho ı ~ t o v ~ S a u s s u r e, ~$ tov Chomsky kaı tov Carnap，пєрıүрá甲 $\frac{\text { то }}{}$

 пуعицатıкท́ ঠрабтпрıóтпта．

 I．To ε ívaı kaı oı $\lambda \varepsilon ́ \xi \varepsilon ı S$

£ ε ठúo катєuӨúvoદıৎ $\varepsilon \xi \tau т a ́ \zeta \varepsilon t a ı ~ \eta ~ a v t a п o ́ к \rho ı \sigma \eta ~$

 каı tov ко́бцо：

 бєıৎ каı итоӨєтько́ৎ 入о́үоৎ）．
β ．Zұtท́ $\mu a t a$ ovouatoӨ\＆бías（aró tov Kpatúخo тоu П入át $\omega v a$ кaı тŋv $\mu \varepsilon \sigma a ı \omega v ı \kappa \eta ́ ~ o \rho o \lambda о ү i ́ a, ~ \mu \varepsilon ́ \chi \rho ı ~$ tov Russell，tov Kripke kaı tov Levi－Strauss）．

5．Ovtoлоүía tп̧ ү入ผ́ббая， II．H бXعтіко́тұта тпৎ ү $\lambda \omega$ б́бая

Екто́s aпó тп үра甲ŋ́，каӨорıотıко́я парáyovtas үıa тŋv $\sigma u \sigma \tau \eta \mu a t ı к \eta ́ ~ a v a ́ \pi \tau u \xi \eta ~ \tau \omega v ~ \pi \varepsilon \rho i ́ ~ ү \lambda \omega ́ \sigma-~$ oŋऽ $\varepsilon ா ו \sigma \tau \eta \mu \omega ́ v ~ \varepsilon i ́ v a i ~ \eta ~ \sigma u v \varepsilon i ́ \delta \eta \sigma \eta ~ т \eta \varsigma ~ \varepsilon \tau \varepsilon \rho o ́ t \eta-~$

 ба，$\mu \varepsilon \tau \alpha ́ \varphi \rho a \sigma \eta ~ \eta ́ / ~ к а ı ~ \sigma u v u ́ \pi a \rho \xi \eta ~ \tau \omega v ~ ү \lambda \omega \sigma \sigma \omega ́ v ; ~$
 aпó tov үعр $\mu a v ⿺ \kappa o ́ ~ เ \delta \varepsilon a \lambda ı \sigma \mu o ́ ~ t o v ~ 19 o ~ a ı \omega ́ v a ~ \delta i ́-~$

 $\mu \varepsilon \tau а \beta a ́ \lambda \lambda o u v ~ к а ı ~ т ı ৎ ~ ı ঠ ́ \varepsilon я \varsigma ~ т ı ৎ ~ о п о i ́ \varepsilon ৎ ~ т а ~ \sigma \eta \mu \varepsilon i ́ a ~$ парıотоúv каı єппрєáそદı тоv Schleiermacher бтך $\mu \varepsilon \lambda \varepsilon ́ t \eta ~ т о u ~ ү ı a ~ т \eta ~ \mu \varepsilon т a ́ \varphi \rho a \sigma \eta . ~$
 $\beta a ́ \lambda \lambda \varepsilon ı ~ т \eta v ~ \delta ı \varepsilon \rho \varepsilon u ́ v \eta \sigma \eta ~ \delta ı a m ı \sigma t \omega ́ \sigma \varepsilon \omega v ~ п о u ~ \mu o ı a ́-~$

そouv $\sigma u \chi v a ́ ~ a v t ı \varphi a t ı к \varepsilon ́ \varsigma . ~ \Delta \varepsilon v ~ u п a ́ p \chi \varepsilon ı ~ \mu i ́ a ~ ү \lambda \omega ́ \sigma-~$
 vatóv va voŋӨعí μ ía ү $\lambda \omega \sigma \sigma a$ үıa кá $\theta \varepsilon$ ह́va átо μ o．

 праүнатıко́тпта（Sapir），a入入á та ópıa кáӨє μ ıáя ү $\lambda \omega$ б́баৎ tautíZovtaı $\mu \varepsilon$ та ópıa tou ко́б μ ои （Wittgenstein）．Oı ү入ف́ббєৎ ठıa甲દ́pouv $\sigma u v \eta ́ \theta \omega \varsigma$ λ о́ү ω autoú то опоío ка入оúvtaı va $\varepsilon к \varphi \rho a ́ \sigma o u v$, óxı λ óү ω autoú то oпоío $\mu \Pi$ ороúv va $\varepsilon к \varphi \rho a ́-$ oouv，$\varepsilon \varphi$ ó oov η a $\lambda \eta$ ク́ $\theta \varepsilon ı a ~ \varepsilon i ́ v a ı ~ \sigma \chi \varepsilon т ı к \eta ́ ~ \mu \varepsilon ~ т \eta v ~ \varepsilon ́ к-~$甲ра⿱㇒ т ωv ठıa甲орєтıкஸ́v $\varepsilon \mu \pi \varepsilon ı \rho ı \omega ́ v ~ \sigma \varepsilon ~ к а ́ Ө \varepsilon ~$ ү $\lambda \omega \sigma \sigma a$（Jacobson）．

To 甲aivó $\mu \varepsilon$ vo тךৎ $\mu \varepsilon \tau a ́ \varphi \rho a \sigma \eta \varsigma ~ \delta \varepsilon v ~ \varepsilon ́ \chi \varepsilon ı ~ \lambda o ı п o ́ v ~$
 voıa tทৎ ү $\lambda \omega \sigma \sigma$ เкńৎ ı $\sigma o \delta u v a \mu i ́ a ৎ . ~ A v ~ o ́ ~ \mu \omega ৎ ~ \mu о ı a ́-~$

入óүou пои סıa $о \rho \varphi \omega ́ v \varepsilon ı ~ t ı ৎ ~ \delta ı a v o \eta t ı к દ ́ ৎ ~ \delta о \mu \varepsilon ́ ৎ ~$ （Maupertuis），$\mu \varepsilon ́ v \varepsilon ı ~ a v o ı к т \eta ́ ~ \eta ~ u ா o ́ \theta \varepsilon \sigma \eta ~ \mu ı a ́ ৎ ~ o \rho ı-~$ $\sigma \mu \varepsilon ́ v \eta \varsigma ~ \sigma \chi \varepsilon ́ \sigma \eta \varsigma ~ t \omega v ~ п о к к i ́ \lambda \omega v ~ ү \lambda \omega \sigma \sigma \omega ́ v ~ \mu \varepsilon ~ \varepsilon ́ v a ~$
 $\mu i ́ a ~ \delta \varepsilon v ~ т а u t i ́ \zeta \varepsilon \tau a ı ~ \mu \varepsilon ~ a u t o ́ ~(\mu \varepsilon v t a \lambda ı \sigma \mu o ́ c ~ B a u z e e-~$
 μ ıая $\mu \varepsilon т а \varphi \rho а \sigma т ı к и ́ \varsigma ~ a \lambda u ́ \sigma o u ~ a п o ́ ~ ү \lambda \omega ́ \sigma \sigma а ~ \sigma \varepsilon ~$ ү $\lambda \omega \sigma \sigma a, \mu \pi о \rho \varepsilon$ í $́ \sigma \omega \varsigma ~ v a ~ п \rho о \sigma \delta ı \rho ı \sigma т \varepsilon i ́ ~ \mu i ́ a ~ a п o ́-~$入utף $\mu \varepsilon \tau а ́ \varphi p a \sigma \eta, \delta ı a \psi \varepsilon u ́ \delta o v t a \varsigma ~ t o v ~ \sigma \eta \mu a \sigma ı о \lambda о-~$
 бто клعıбтó ठıкó tŋৎ $\sigma u ́ \sigma t \eta \mu a$（Quine）．

6．$\Sigma \kappa \varepsilon ́ \Psi \eta ~ к а ı ~ ү \lambda \omega ́ \sigma \sigma a ~$

Avá $\mu \varepsilon \sigma a$ ota סúo áк ρa, tov vo $\mu i v a \lambda ı \sigma \mu o ́ ~(\tau a u ́ t ı-~$

 бкદ́ $\eta \varsigma)$ ，тíӨєtaı то пavápхaıо $\varepsilon \rho \omega ́ t \eta \mu a, ~ п о и ~$

 $\gamma \lambda \omega \sigma \sigma \alpha$ ；
$\Sigma \varepsilon \operatorname{avtí\theta \varepsilon \sigma \eta } \mu \varepsilon$ тпv $\varphi u \sigma ı \kappa \eta ́, ~ t \eta v a v \theta \rho \omega ́ \pi ı v \eta ~ ү \lambda \omega ́ \sigma-$
入óүou aпока入и́птєı тףv пєпєрабцє́vๆ ठuvatótŋ－ тá tךऽ．Мعıoveктєí $\sigma \tau \eta v$ avtí入 $\eta \psi \eta ~ \tau \omega v ~ \sigma u \mu \varphi \rho a-$
 aıtıatoú поu $\sigma u v \delta \varepsilon ́ \varepsilon ı ~ \mu \varepsilon т а \xi u ́ ~ т о u ৎ ~ ү \lambda \omega \sigma \sigma ı к а ́ ~ к а ı ~$
 $\sigma a \times \omega \rho i ́ ̧ ~ \sigma к \varepsilon ́ \psi \eta$ ．
 үрацнí̧ouv á $\lambda \lambda \omega \sigma \tau \varepsilon \pi \omega \varsigma ~ \eta ~ ү \lambda \omega ́ \sigma \sigma a ~ \delta \varepsilon v ~ т а u т i ́ \zeta \varepsilon-~$ таı $\mu \varepsilon$ тך $\sigma \kappa \varepsilon ́ \psi \eta$ ．H $\lambda \varepsilon ́ \xi \eta ~ \delta \varepsilon v ~ \delta \eta \lambda \omega ́ v \varepsilon ı ~ п а \rho a ́ ~ \mu \varepsilon ́ \rho о \varsigma ~$

 бта va ava入uӨعí $\sigma \varepsilon$ عпıцє́

фодоүıкв́я，катпүорıакє́я，фшvодоүıкв́я），оı опоі́－ $\varepsilon \varsigma ~ a к о \lambda o u Ө o u ́ v ~ к a t a ́ ~ t \eta v ~ a v a ́ m t u \xi \eta ́ ~ t o u ৎ ~ \delta ı a \varphi o-~$ $\rho \varepsilon \tau เ к \varepsilon ́ \varsigma ~ \varphi a ́ \sigma \varepsilon ı \varsigma, ~ к а ́ п о т \varepsilon ~ \mu a ́ \lambda ı \sigma т а ~ a m o \sigma u v \delta \varepsilon ́ o v t a ı ~$ $\mu \varepsilon \tau а \xi u ́ ~ t o u c . ~$

入oıпóv оцı入ía кaı ү入ஸ́бба عívaı aкó $\mu \eta$ ह́va поín－ $\mu a, ~ \varphi Ө a \rho \mu \varepsilon ́ v o ~ a п o ́ ~ t o v ~ \chi \rho o ́ v o, ~ a v \varepsilon п a i ́ \sigma Ө \eta t o, ~ a п o ́ ~$ то опоі́о μ а́八ıота єкпорєи́ovtaı η 入оүıкท́ каı η үрациатьки́．

O Freud סıєpعuvá tıৎ $\sigma \chi \varepsilon ́ \sigma \varepsilon ı \varsigma ~ т \eta \varsigma ~ ү \lambda \omega ́ \sigma \sigma a \varsigma ~ \mu \varepsilon$
 т ωv عvvolóv $\mu \varepsilon ́ \chi \rho ı ~ т \eta v ~ п \rho \omega ́ т \eta ~ т о и ৎ, ~ т \eta ~ \mu \eta т \rho ı к и ́ ~$ бףuađía．O Wittgenstein $\varepsilon \iota \sigma a ́ \gamma \varepsilon ı ~ a ́ \lambda \lambda \omega \sigma \tau \varepsilon ~ \tau \eta v ~ \varepsilon ́ v-$ vola tou naiүvíou үıa тŋ $\mu \varepsilon \lambda \varepsilon ́ t \eta ~ \tau \omega v ~ ү \lambda \omega \sigma \sigma \omega ́ v$, тıৎ опоíєৎ $\theta \varepsilon \omega \rho \varepsilon i ́ ~ \sigma т \eta v ~ п о \lambda \lambda a п \lambda о ́ т \eta т a ́ ~ т о u s, ~ a i ́-~$
 ү $\lambda \omega \sigma \sigma a \varsigma$ ．Avtı $\lambda a \mu \beta a ́ v \varepsilon t a ı ~ т \eta ~ \varphi ı \lambda о \sigma о \varphi i ́ a, ~ o ́ m \omega \varsigma ~ о ~$ Freud tఇv $\eta \delta o v \eta ́, ~ \sigma a v ~ \mu i ́ a ~ \pi a ́ \lambda \eta ~ a \delta ı a ́ k o \pi \eta ~ \varepsilon v a ́ v t ı a ~$
 દ́xદı паүıঠعutєí．

 тá甲paon（ $\beta a \sigma \iota \sigma \mu \varepsilon ́ v \omega v ~ \sigma \tau \eta v ~ a \varphi \varepsilon \lambda \eta ́ ~ \tau a u ́ t ı \sigma \eta ~ \tau \omega v ~$ үраптढ́v $\sigma \eta \mu \varepsilon i ́ \omega v$ тпৎ ү $\lambda \omega ́ \sigma \sigma a \varsigma ~ \mu \varepsilon$ ह́vav т $\varepsilon \chi v \eta$ тó
 боßара́ uпо́ η тпv по入иплоко́тпта тои ү $\lambda \omega \sigma \sigma \iota-$ коú фaıvouévou，va проßaíveı $\sigma \varepsilon$ avá $\lambda u \sigma \eta$ т ωv
 тоu ava
 бп характпрıотıк ω v $\varphi \rho a ́ \sigma \varepsilon \omega v, \lambda \varepsilon ́ \xi \varepsilon \omega v$ ท́ $\varepsilon v v o t \omega ́ v$ кaı η autó $\mu a t \eta ~ \varepsilon \xi а ү \omega ү \eta ́ ~ п \varepsilon \rho ı \lambda \eta ́ \psi \varepsilon \omega v ~ п а \rho о u \sigma ı a ́-~$
 пढ́v ท́ aסuva ías tņ $\mu \eta \chi a v \eta ́ \varsigma ~ v a ~ a v a ү v \omega \rho i ́ \sigma \varepsilon ı ~$

 ouvtaктıки́ avá入uon кaı η oŋцабıо入оүıки́ avá－

 $\mu \pi о \rho \varepsilon i ́ ~ \lambda o ı \pi o ́ v ~ v a ~ \sigma т \eta \rho ı \chi Ө \varepsilon i ́ ~ \sigma t o v ~ т \rho o ́ m о ~ \varepsilon ́ v т a \xi \eta ৎ ~$

 $\mu \varepsilon v a$ عíval єпıб甲а入ńs．
 tov مó入o $\tau \omega v$ ү $\lambda \omega \sigma \sigma$ เк ωv $\varepsilon \rho ү a \lambda \varepsilon i ́ \omega v ~(\lambda \varepsilon \xi ı к a ́, ~$ үраццатıкє́ৎ，$\mu \varepsilon \tau а \varphi \rho a ́ \sigma \varepsilon ı \varsigma) ~ \sigma т \eta ~ \delta ı a ́ \delta о \sigma \eta ~ т \omega V ~$ ү $\lambda \omega \sigma \sigma \omega ́ v$ ．To $\varepsilon \rho \omega ́ t \eta \mu a$ $\sigma \eta ́ \mu \varepsilon \rho a ~ \varepsilon i ́ v a ı ~ a v ~ \mu \pi о р о и ́-~$ $\mu \varepsilon, \sigma \varepsilon$ поьо́ $\beta a \theta \mu$ ќ каı $\mu \varepsilon$ поьо́ тí $\mu \eta \mu a$ ，va прохш－
 коıvผvías．इúyxpova пєıрá $\mu a t a ~ \sigma t \eta ~ \mu \eta x a v ı к \eta ́ ~$ $\varepsilon п \varepsilon \xi \varepsilon \rho ү a \sigma i ́ a ~ т о u ~ \lambda o ́ ү o u ~ \delta \varepsilon i ́ \chi v o u v ~ п \omega \varsigma ~ a v ~ a ́ v \theta \rho \omega-~$ поя μ порєí va ипокатабтŋ́бєı тŋ $\mu \eta \times a v \eta ́, ~ \delta \varepsilon v$ $\sigma u \mu \beta$ aíveı ó $\mu \omega \varsigma$ то avtíӨعто．

9．Фıлобочía tņ ү $\lambda \omega \sigma \sigma o \lambda o \gamma i ́ a s$

Yпápxouv kavóves поu puӨuíßouv тŋ ү入ஸ́бба ท́

 otos характńpas tпৎ out入ías，кatateívouv otn

 пооß入пиатıки́ тпя ү $\lambda \omega \sigma \sigma a \varsigma$ ．Oı aסuva $\mu i ́ \varepsilon \varsigma ~ \mu a ́ \lambda ı-~$

 ү $\lambda \omega \sigma \sigma$ เк ω v $\varepsilon ா เ \sigma т \eta \mu \omega ́ v ~ \omega \varsigma ~ п \rho о \varsigma ~ т а ~ к р i ́ \sigma ı \mu а ~ \varphi a l-~$ vó $\mu \varepsilon v a$ tou $\sigma u ́ \gamma X \rho o v o u ~ \beta i ́ o u ~ п о и ~ \sigma х \varepsilon т i ́ \zeta o v t a ı ~ \mu \varepsilon ~$
 $\varepsilon п เ к о ı \omega \omega$ vía̧，ка入пáそоuба по入иү $\lambda \omega \sigma \sigma i ́ a ~ к а ı ~ п о \lambda-~$ $\lambda a п \lambda a \sigma ı a \sigma \mu o ́ s ~ т \eta \varsigma ~ ү \lambda \omega \sigma \sigma ı к и ́ я ~ п о ו к ı \lambda i ́ a \varsigma), ~ п р о-~$ отateú ε ß

 avtavak入á otov пар’ $\eta \mu i ́ v ~ ү \lambda \omega \sigma \sigma ı к o ́ ~ \delta ı \chi a \sigma \mu o ́ . ~$
 $\mu \eta$ апо́ тıৎ пооката入ń $\psi \varepsilon ı ৎ ~ к а ı ~ \varphi a ı v o ́ ~ \mu \varepsilon v a ~ п о ı к i ́-~$

 ү $\lambda \omega \sigma \sigma \omega ́ v$ ）каı а́ $\lambda \lambda о т \varepsilon$ апоо́ß $\lambda \varepsilon п т а$（о́п $\omega \varsigma ~ \eta ~ \varepsilon \xi а-~$

 болоүוка́ проүра́ μ ата，биотпиатопоínon тпร паıठаү $\omega ү$ ки́я т ωv ү $\lambda \omega \sigma \sigma \omega ́ v$ каı $\varepsilon к п о ́ v \eta \sigma \eta ~ \varepsilon п া-~$
 $\sigma \omega \sigma \tau \eta ́ \varepsilon v \eta \mu \varepsilon ́ \rho \omega \sigma \eta$ tou koıvoú．

IV．Гл $\omega \sigma \sigma a ́ \rho ı o^{\prime O} \rho \omega v$ Г $\lambda \omega \sigma \sigma$ кќя Texvoגоүíac каı Плпрочоріки́s

Н проопá $\theta \varepsilon ı a ~ \varepsilon \mu \pi \lambda о u t ı \sigma \mu o u ́ ~ t o u ~ ү \lambda \omega \sigma \sigma a \rho i ́ o u ~$ ó $\rho \omega v$ Г $\lambda \omega \sigma \sigma ı к \eta ́ \varsigma ~ T \varepsilon \chi v o \lambda o ү i ́ a s ~ к a ı ~ П \lambda \eta \rho о 甲 о \rho ı-~$ кク́ৎ $\sigma u v \varepsilon x i ́ \zeta \varepsilon \tau а ı ~ \sigma т о ~ т \varepsilon u ́ X o \varsigma ~ a u t o ́ ~ \mu \varepsilon ~ т \eta v ~ п \rho о-~$ $\sigma \theta \eta ́ к \eta ~ v \varepsilon ́ \omega v ~ o ́ \rho \omega v ~ \mu \varepsilon \tau а \varphi \rho a \sigma \mu \varepsilon ́ v \omega v ~ a п o ́ ~ т \eta v ~$ Аүү入ıкп́．Парака入ои́ $\mu \varepsilon$ va $\sigma u \mu \beta a ́ \lambda \varepsilon \tau \varepsilon ~ \sigma т \eta v ~ п р о-~$

 ТП $\mu \varepsilon \tau а ́ \varphi \rho a \sigma \eta ~ \mu \pi о \rho \varepsilon i ́ t \varepsilon ~ v a ~ п \rho о т \varepsilon i ́ v \varepsilon т \varepsilon ~ \omega \varsigma ~ а п о-~$ ठєктŋ́，$\varepsilon \varphi o ́ \sigma o v ~ \eta ~ \theta \varepsilon ́ \sigma \eta ~ \sigma a \varsigma ~ ү ı a ~ т \eta v ~ a п о ठ \varepsilon к т о ́ т \eta-~$
 отعí入єтє ópous үıа tous oпоíous uпápхદı кá－ поוа анфıßо入ía $\omega \varsigma ~ п \rho о \varsigma ~ т \eta v ~ а п о б \varepsilon к т о ́ т \eta т а ~ т \eta \varsigma ~$ $\mu \varepsilon \tau а ́ \varphi \rho a \sigma \eta ́ \varsigma ~ т о u \varsigma . ~ H ~ п р о \sigma п a ́ \theta \varepsilon ı a ~ a u t \eta ́ ~ \varepsilon ́ \chi \varepsilon ı ~ \sigma т o ́-~$

 хvo八оүíaя каı Пдпрофорıки́я．
 Г．Kapayıávvクs
－aligned parallel corpora

－interface
бוєпа甲и́
－mapping
aпєıко́vion
－matching taípıaqua
－model
нOVtéגo
－pattern
про́тито
－recursion avaठрони́
－supervised learning
$\varepsilon \kappa \mu a ́ \theta \eta \sigma \eta \mu \varepsilon \varepsilon п i ́ \beta \lambda \varepsilon \Psi \eta$
－tokeniser

－unification grammar үрациатіки́ عvoпоínons
－unsupervised learning $\varepsilon к \mu a ́ \theta \eta \sigma \eta$ X ω рís $\varepsilon п i ́ \beta \lambda \varepsilon \psi \eta$
 I．Kóvtos
－anaphora resolution strategy бтратпүіки́ єпíגuбףৎ ava甲орáৎ
－centering theory

－content analysis
aváגuoŋ перıєxоцદ́vou
－cue phrases
عvapктікє́ৎ 甲ра́бєıৎ
－declarative knowledge

－discourse attention centering $\varepsilon п ו к \varepsilon ́ v т \rho \omega \sigma \eta ~ п \rho о \sigma о х и ́ ৎ ~ \sigma т о ~ к є i ́ \mu \varepsilon v o ~$
－incremental dialogue evaluation

－intonational characteristics
характпрıбтıка́ впıтоvıбцои́
－plan recognition
avaүv由́pıoŋ oxદठíou
 Г．Папакшvoта⿱亠тívou
－application software лоүıбнıко́ єфарцоүш́v
－high level language

－interaction $a \lambda \lambda \eta \wedge \varepsilon \Pi i ́ \delta \rho a \sigma \eta$
－mapping function ouvápтŋoף aпعıкóvioŋs
－mutual exclusion аноıßаі́оя апоклвıбно́я
－segmentation ката́тןŋбŋ
－tree structured files бєvठробонףนє́va apxعía
－virtual memory عוкоvıки́ $\mu v \grave{\mu \eta}$

V．Еıठŋ́бєıৎ үıа тп Г $\lambda \omega \sigma \sigma ı к \grave{~ T \varepsilon \chi v o \lambda o ү i ́ a ~}$

乏uvéठрıa

CMC／98 Second International Conference on Cooperative Multimodal Communication， Theory and Applications

Sponsored by the Universities of Brabant Joint Research Organization（SOBU）
and the ACL Special Interest Group in Multimedia （SIGMEDIA）
Tilburg，The Netherlands，28－30 January 1998
For all other matters contact the conference secretariat：
Anne Adriaensen
Computational Linguistics and Artificial Intelligence Group，
Tilburg University，
P．O．Box 90153，
5000 LE Tilburg，
The Netherlands．
phone：＋31 134663060 ；
fax +311346631 10；
email：denk＠kub．nl．
Web：http：／／cwis．kub．nl／～fdl／research／ti／Docs／CMC

Conference Announcement and Call for Papers ELSNET in Wonderland

How can we turn ELSNET into a showcase of Language and Speech technology？
March 25－27， 1998
Registration forms will be distributed via elsnet－ list and via our WWW pages
（http：／／www．elsnet．org／wonderland／form．html），or will be sent to you upon request．

European Network in Language and Speech email：elsnet＠let．ruu．nl
mail ：Utrecht Institute of Linguistics OTS，
Trans 10， 3512 JK，Utrecht，The Netherlands
tel：＋31 302536039
fax：＋31302536000
www ：http：／／www．elsnet．org

First International Conference on Language Resources and Evaluation
Granada，Spain

28－30 May 1998
For full details on the submission procedures and the conference topics，please consult the ELRA Web site：http：／／www．icp．inpg．fr／ELRA

Malin Nilsson	Tel: +33145865300
ELRA/ELDA	Fax: +33145864488
87, Avenue d'Italie	E-mail: elra-elra@calva.net
75013 PARIS	http://www.icp.inpg.fr/ELRA

Deadline for Submission: 1 December 1997
http://www.icp.inpg.fr/ELRA/conflre.html

Sixth International Conference on Principles of Knowledge Representation and Reasoning (KR'98)

Trento, Italy, June 2-5, 1998
(With workshops and coordinated events
May 30-June 1 and June 6-8, 1998)
World Wide Web: http://www.kr.org/kr/kr98/
Autoresponder: kr98-info@kr.org

Third International Conference on Information-Theoretic Approaches to Logic, Language, and Computation ITALLC98

Hsi-tou, Taiwan
16-19 June, 1998
Although we prefer email submissions, we will also accept abstracts sent by regular mail. Please send 6 copies of such submissions to:
Patrick Blackburn
Computerlinguistik
University of Saarland
D-66041 Saarbruecken
Germany
The Deadline for submissions is
December 15, 1997.
The ITALLC98 website is
http://www.phil.ccu.edu.tw/~itallc98/home.html This site is mirrored at:
http://www.Igu.ac.uk/itallc98/home.html
http://www.mic.atr.co.jp/~ ashimoji//TALLC98/home.html

AAAI-98 Tutorial Forum Fifteenth National Conference on Artificial Intelligence

July 26-30, 1998, Madison, Wisconsin
Sponsored by the American Association for Artificial Intelligence (AAAI).
www.aaai.org
Submission Deadline
Proposals must be received by November 14, 1997. Decisions about the tutorial program will be made by December 15, 1997. Speakers should be prepared to submit completed course materials by May 29, 1998.
Two hard copies of proposals should be sent to the following address.

Electronic submissions will also be accepted (PostScript preferred):
Padhraic Smyth
444 Computer Science
Information and Computer Science
University of California
Irvine, CA 92697-3425
smyth@sifnos.ics.uci.edu
tel: 7148242558
fax: 7148244056
Questions should be directed to Padhraic Smyth or Bart Selman at selman@research.att.com, (908) 582-2538, or (908) 582-7550 (fax).

COLING-ACL'98

First Announcement and Call for Papers
17th International Conference on Computational Linguistics (COLING'98) and 36th Annual Meeting of the Association for Computational Linguistics (ACL'98)
Universite de Montreal
Montreal (Quebec), Canada
August 10-14, 1998
Deadlines:

- for submissions: January 30, 1998
- for submissions in the student sessions: March 7, 1998
- proposals for pre-conference tutorials: December 31, 1997
- proposals for post-conference workshops: December 31, 1997
For details, see:
http://coling-acl98.iro.umontreal.ca
or send an e-mail request to:
coling-acl98@iro.umontreal.ca
or send a hardcopy request to:
COLING-ACL'98
Dr. Pierre Isabelle
RALI, DIRO, Universite de Montreal
CP 6128, Succ. Centre-ville
Montreal (Quebec), Canada H3C 3J7

HCI'98

1-4 September 1998
Sheffield Hallam University
Sheffield S1 1WB, UK
The HCl annual conference is the primary European conference on human-computer interaction.
Important Dates:
23 January Submission deadline for full papers and tutorials.
27 March Full paper notification.
8 May Submission deadline for demonstrations, doctoral consortium, organisational overviews,
pannels and posters, short papers and videos.
Full paper camera ready copy due.
22 May Industry day submissions deadline.
HCl'98 Conference Coordinator
Conference 21
Sheffield Hallam University
Sheffield, S1 1WB, UK.
Telephone: +44 (0)114 2255334
Fax: +44 (0)114 2255337
E-Mail: hci98@shu.ac.uk
http://www.shu.ac.uk/hci98

IBERAMIA-98
 Sixth Ibero-American Conference on Artificial Intelligence

Lisbon, Portugal
October 5-9,1998
(Under the auspices of the Portuguese Association for Artificial Intelligence)
Please visit the web page for the most recent information:
http://www-ssdi.di.fct.unl.pt/~iberamia/
E-mail: iberamia@di.fct.unl.pt

The 5th International Conference on Spoken Language Processing ICSLP 98

Sydney Convention Centre, Sydney Australia 30th November-4th December 1998
WWW: http://cslab.anu.edu.au/icsIp98
E-mail Submission: icslp98@one.net.au
Postal: ICSLP '98 Secretariat, GPO Box 128, Sydney, NSW 2001, Australia
Technical queries:
Robert Dale - email: rdale@mpce.mq.edu.au
General Information:
Email: icslp98@tourhosts.com.au

Third Conference on "Logic and the Foundations of the Theory of Games and Decisions" (LOFT3)

ICER, Torino (Italy), December 17-20, 1998
Potential contributors should send one copy of an extended abstract (not more than 3 pages) to: The Organizing Committee, LOFT3
International Centre for Economic Research
Villa Gualino Viale Settimio Severo, 63
10133 Torino, Italy
(Fax: 39.11.6600082, E-mail: icer@inrete.it, URL: http://pages.inrete.it/icer)
Giacomo Bonanno
Department of Economics, gfbonanno@ucdavis.edu University of California, Tel. (916)-752 1574
One Shields Avenue, Fax: (916)-752 9382
Davis, CA 95616-8578

इuипо́бıa

AAAI 1998 Spring Symposium on Intelligent Text Summarization
http://www.cs.columbia.edu/~ radev/aaai-sss98-its Sample topics:

- Knowledge Representation Issues
- AI and Statistical Techniques
- Discourse Analysis and Discourse Planning
- Concise Text Generation
- Summarization of Multiple Documents
- Generation of Updates
- Architectures for Summarization
- Multilingual and Multimodal Summarization
- User Modelling
- Scalability
- Evaluation of Text Summarization

Submissions for the symposium are due on October 24, 1997. Notification of acceptance will be given by November 14, 1997. Materials to be included in the working notes of the symposium must be received by January 17, 1998.
Send all submissions electronically to:
radev@cs.columbia.edu
If you are unsure whether your file will print at our site, please submit four days before the deadline in order to receive a confirmation.
Dragomir Radev (co-chair)
Department of Computer Science
Columbia University
1214 Amsterdam Avenue
New York, NY 10027-7003, USA
Phone: 1-212-939-7118
Fax: 1-212-666-0140

JICSLP'98 -- Second CFP
Joint International Conference and Symposium on Logic Programming
15-19 June 1998, Manchester, UK
Deadlines:
Submission by: 12 December 1997
Notification by: 22 February 1998
Camera Ready Copies by: 16 March 1998
Conference home page:
http://www.cs.man.ac.uk/~ kung-kiu/jicslp98.html

इuveठpıáのعıৎ

इuveठoíaon tou $\Sigma u \mu \beta o u \lambda i ́ o u ~ t o u ~ E u p \omega \pi a i ̈ к о u ́ ~$
 Ivotıтoútou Епє६६pүaoías tou＾óүou．
AӨŋ́va 16 Фعßpouapíou 1998
H $\Sigma u v \varepsilon \delta$ píaon tou $\Sigma u \mu \beta$ ou入íou tou ELSNET $Ө a$ ठเદそаХӨદí σ то vદ́o ктท́pıo тоu IEへ．
Δ เعúӨuvoŋ：

Парáঠعıбоৎ Aцароuбíou T．K． 15125
Tఇ入．： 6800959 • Fax： 6854270

ミuvavtńoعıৎ Epүaбíaৎ（Workshops）

Workshop on Mathematical Linguistics（WML） What should linguists expect from mathematical linguistics？

（to be held concurrently with The XXVIII Linguistic Symposium on Romance Languages， LSRL 28，April 16－19，1998，The Pennsylvania State University，http：／／www．psu．edu／｜srl／）

Deadline for Submissions：
The deadline for the submission of papers is January 17，1998．Manuscripts should not exceed 4,000 words，and should include an abstract of no more than 250 words．

They must be sent electronically in LaTeX format to： cmv＠astor．urv．es，cmv＠tinet．fut．es
Authors will be notified of the decision of the Program Committee by February 17， 1998.

For further information on the WML，see the webpage：http：／／www．urv．es／Grups／grImc

Workshop on
 Deception，Fraud and Trust in Agent Societies Minneapolis／St Paul，USA，May 9， 1998

Paper submissions：will include a full paper and a separate title page with the title，authors（full address），a 300－400 word abstract，and a list of keywords．The length of submitted papers must not exceed 12 pages including all figures，tables， and bibliography．All papers must be written in English．The authors must send by email the title page of their paper by January 15th． Submissions must be sent electronically，as a postscript or MSword format file，by January 20th．The authors must also airmail one hard copy of their paper to two of the organizers as soon as possible after the electronic submission． Submission Address：
for the electronic submission：
Rino Falcone
falcone＠pscs2．irmkant．rm．cnr．it
tel．$+39-6-86090211$
Important Dates：
Deadline for the electronic title page January 15， 1998
Deadline for Paper Submission January 20， 1998
Notification of Acceptance／Rejection March 1， 1998
Deadline for camera－ready version April 1， 1998
Workshop May 9， 1998

Twendial＇98

13th Twente Workshop on Language Technology is the 2nd workshop on＂Formal Semantics and Pragmatics of Dialogue＂

（follow－up of Mundial＇97）
Enschede，The Netherlands
13－15 May 1998
Deadline for submission 2－page abstract：
January 12， 1998
Notification of acceptance：February 16， 1998
Deadline for accepted papers：April 13， 1998
Workshop：May 13－15， 1998
Joris Hulstijn Computer Science，University of Twente joris＠cs．utwente．nl PO．Box 217， 7500 AE Enschede，Netherlands in（31）53．4894652
＜http：／／www．cs．utwente．nl／～joris／＞

Sixth Workshop on Very Large Corpora

August 15－16， 1998 （immediately following ACL／COLING－98）
University of Montreal，Montreal，Quebec，Canada
Submission Deadline：April 20， 1998

Notification Date：June 1， 1998
Camera ready copy due：June 22， 1998

Contact：

Eugene Charniak
e－mail ec＠cs．brown．edu
Address：Before February 1， 1998 and
After June 1， 1998
Department of Computer Science
Brown University
Providence RI 02912－1910

Address：From February 1， 1998 until June 1， 1998
Department of Computer Science
Johns Hopkins University

NEB 224， 3400 N．Charles Street Baltimore，MD 21218－2694

Call for Workshop Proposals

http：／／www．cogs．susx．ac．uk／ecai98／workshopscall．html The ECAI－98 Programme Committee invites proposals for workshops to be held in conjunction with the conference．The workshops will be held on 24－25 August 1998，immediately prior to the start of the main conference．

ECAI－98 Secretariat Tel：＋44（0）1273678448
Centre for Advanced Software Applications Fax： ＋44（0）1273671320

University of Sussex Email：ecai98＠cogs．susx．ac．uk Brighton，BN1 9QH，UK URL：
http：／／www．cogs．susx．ac．uk／ecai98

ECAI－98 is organised by the European Coordinating Committee for Artificial Intelligence （ECCAI）and hosted by the Universities of Brighton and Sussex on behalf of AISB．

Call for papers for a special issue of the Applied Artificial Intelligence（AAI）Journal on Animated Interface Agents

（see also http：／／www．dfki．de／～andre／calls／aai．html） Applied Artificial Intelligence，an international journal，will feature a special issue on Animated Interface Agents，to be published in 1998．This call for papers is primarily directed at the authors of papers presented at the IJCAI－97 Workshop on Animated Interface Agents．

Xعıцعрıvá Σ Хо入єía

LOT Winterschool 1998

Courses

Netherlands Graduate School of Linguistics（LOT） From 17－28 January 1998 the LOT Graduate Courses will take place in Leiden．You can find course descriptions，enrollment forms and more information at http：／／wwwots．let．ruu．nl／LOT／ws98．html． You can also contact the LOT－secretariat， （Christien Bok，LOT，Trans 10， 3512 JK Utrecht， The Netherlands，$+31(0) 30-2536006$ ，
fax．＋31（0）30－2536000，LOT＠let．ruu．nl）
we will send you booklets with course－ descriptions and enrollment forms．
Deadline for enrollments for LOT－affiliates is November 1st，for others December 1st．

乏عцıvápıa

TعXvoגoүías 17 Фعßрouapíou 1998

To $\sigma \varepsilon \mu ı v a ́ \rho ı о ~ Ө a ~ \delta ı \iota \xi a \chi Ө \varepsilon i ́ ~ \sigma т о ~ v \varepsilon ́ o ~ к т ท ́ p ı o ~ т о u ~ I E \Lambda . ~$ Δ เモúӨuvoŋ：
Епıסaúpou каı Артє́ μ гоৎ
Пара́бєıбос А Аароибíou T．K． 15125.
Tఇ入．： 6800959
Fax： 6854270
ミто $\Sigma \varepsilon \mu ı v a ́ p ı o ~ Ө a ~ \sigma u \mu \mu \varepsilon \tau a ́ \sigma X o u v ~ \omega \varsigma ~ o \mu i \lambda \eta t \varepsilon ́ \varsigma ~$

[^0]
[^0]:

