ΕΡΓΑ
Conditional Random Fields versus template-matching in MT phrasing tasks involving sparse training data
Ερευνητική περιοχή:  
Άλλα θέματα Πληροφορικής
Είδος:  
Άρθρο σε περιοδικό
| Έτος: | 2014 | ||||
|---|---|---|---|---|---|
| Συγγραφείς: | Γιώργος Ταμπουρατζής | ||||
| Περιοδικό: | Pattern Recognition Letters | ||||
| Τόμος: | in print | ||||
| Αριθμός: | in print | ||||
| ISSN: | 0167-8655 | ||||
| DOI: | in print | ||||
| Περίληψη: | This communication focuses on comparing the template-matching technique to established probabilistic approaches - such as Conditional Random Fields (CRF) - on a specific linguistic task, namely the phrasing of a sequence of words into phrases. This task represents a low-level parsing of the sequence into linguistically-motivated phrases. CRF represents the established method for implementing such a data-driven parser, while template-matching is a simpler method that is faster to train and operate. The two aforementioned techniques are compared here to determine the most suitable approach for extracting an accurate model. |
||||
| [Bibtex] | |||||





